Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Food Res Int ; 176: 113800, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163710

RESUMEN

There is a growing demand for specialty coffee with more pleasant and uniform sensory perception. Wet fermentation could modulate and confer additional aroma notes to final roasted coffee brew. This study aimed to assess differences in volatile compounds and the intensities of sensory descriptors between unfermented and spontaneously fermented coffee using digital technologies. Fermented (F) and unfermented (UF) coffee samples, harvested from two Australia local farms Mountain Top Estate (T) and Kahawa Estate (K), with four roasting levels (green, light-, medium-, and dark-) were analysed using near-infrared spectrometry (NIR), and a low-cost electronic nose (e-nose) along with some ground truth measurements such as headspace/gas chromatography-mass spectrometry (HS-SPME-GC-MS), and quantitative descriptive analysis (QDA ®). Regression machine learning (ML) modelling based on artificial neural networks (ANN) was conducted to predict volatile aromatic compounds and intensity of sensory descriptors using NIR and e-nose data as inputs. Green fermented coffee had significant perception of hay aroma and flavor. Roasted fermented coffee had higher intensities of coffee liquid color, crema height and color, aftertaste, aroma and flavor of dark chocolate and roasted, and butter flavor (p < 0.05). According to GC-MS detection, volatile aromatic compounds, including methylpyrazine, 2-ethyl-5-methylpyrazine, and 2-ethyl-6-methylpyrazine, were observed to discriminate fermented and unfermented roasted coffee. The four ML models developed using the NIR absorbance values and e-nose measurements as inputs were highly accurate in predicting (i) the peak area of volatile aromatic compounds (Model 1, R = 0.98; Model 3, R = 0.87) and (ii) intensities of sensory descriptors (Model 2 and Model 4; R = 0.91), respectively. The proposed efficient, reliable, and affordable method may potentially be used in the coffee industry and smallholders in the differentiation and development of specialty coffee, as well as in process monitoring and sensory quality assurance.


Asunto(s)
Coffea , Café , Café/química , Tecnología Digital , Fermentación , Coffea/química , Odorantes/análisis
2.
Chem Biodivers ; 20(11): e202300602, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37798811

RESUMEN

This study compared free and bound phenolic compounds in various marine microalgae species. It assessed total phenolic content (TPC), total flavonoid content (TFC) and total condensed tannin content (TCT) and their antioxidant capacities using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS⋅+ ) radical cation-based assay and ferric ion reducing antioxidant power assay. Liquid chromatography-mass spectrometry (LC-MS) was also employed to characterize the phenolic profiling. Results showed that free phenolic compounds ranged from 1.83-6.45 mg GAE/g d. w., while bound phenolic compounds ranged from 4.03-26.03 mg GAE/g d. w., indicating significant differences. These variations were consistent across assays, highlining unique profiles in different species. A total 10 phenolics were found in these seven microalgae, including 1 phenolic acid, 6 flavonoids, 1 other polyphenol and 2 lignans. 4'-O-methyl-(-)-epigallocatechin 7-O-glucuronide and chrysoeriol 7-O-glucoside in microalgae were firstly reported in microalgal samples. These findings have implications for future applications in industries.


Asunto(s)
Antioxidantes , Microalgas , Antioxidantes/química , Flavonoides/química , Fenoles/química , Extractos Vegetales/química
3.
J Food Sci ; 88(9): 3737-3757, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37530606

RESUMEN

Seaweeds, serving as valuable natural sources of phenolic compounds (PCs), offer various health benefits like antioxidant, anti-inflammatory properties, and potential anticancer effects. The efficient extraction of PCs from seaweed is essential to harness their further applications. This study compares the effectiveness of different solvents (ethanol, methanol, water, acetone, and ethyl acetate) for extracting PCs from four seaweed species: Ascophyllum sp., Fucus sp., Ecklonia sp., and Sargassum sp. Among them, the ethanol extract of Sargassum sp. had the highest content of total phenolics (25.33 ± 1.45 mg GAE/g) and demonstrated potent scavenging activity against the 2,2-diphenyl-1-picrylhydrazyl radical (33.65 ± 0.03 mg TE/g) and phosphomolybdate reduction (52.98 ± 0.47 mg TE/g). Ecklonia sp. had the highest content of total flavonoids (0.40 ± 0.02 mg QE/g) in its methanol extract, whereas its ethyl acetate extract contained the highest content of total condensed tannins (8.09 ± 0.12 mg CE/g). Fucus sp. demonstrated relatively strong antioxidant activity, with methanolic extracts exhibiting a scavenging ability against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (54.41 ± 0.24 mg TE/g) and water extracts showing ferric-reducing antioxidant power of 36.24 ± 0.06 mg TE/g. Likewise, liquid chromatography-mass spectrometry identified 61 individual PCs, including 17 phenolic acids, 32 flavonoids, and 12 other polyphenols. Ecklonia sp., particularly in the ethanol extract, exhibited the most diverse composition. These findings underscore the importance of selecting appropriate solvents based on the specific seaweed species and desired compounds, further providing valuable guidance in the pharmaceutical, nutraceutical, and cosmetic industries. PRACTICAL APPLICATION: The PCs, which are secondary metabolites present in terrestrial plants and marine organisms, have garnered considerable attention due to their potential health advantages and diverse biological effects. Using various organic/inorganic solvents during the extraction process makes it possible to selectively isolate different types of PCs from seaweed species. The distinct polarity and solubility properties of each solvent enable the extraction of specific compounds, facilitating a comprehensive assessment of the phenolic composition found in the seaweed samples and guiding industrial production.


Asunto(s)
Phaeophyceae , Algas Marinas , Solventes/química , Antioxidantes/química , Metanol/química , Espectrometría de Masas en Tándem , Extractos Vegetales/química , Fenoles/análisis , Etanol/química , Flavonoides/análisis , Agua/química , Cromatografía Liquida
4.
Food Funct ; 14(2): 899-910, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36537586

RESUMEN

Microalgae are a developing novel source of carbohydrates, phenolic compounds, carotenoids and proteins. In this study, in vitro digestion and colonic fermentation were conducted to examine the total phenolic content and potential antioxidant activity of four microalgal species (Chlorella sp., Spirulina sp., Dunaliella sp., and Isochrysis sp.). The bioaccessibility of targeted phenolic compounds and the short-chain fatty acid (SCFA) production were also estimated. Particularly, Spirulina sp. exhibited the highest total phenolic content (TPC) and free radical scavenging (2,2'-diphenyl-1-picrylhydrazyl, DPPH) capacity after gastrointestinal digestion of 7.93 mg gallic acid equivalents (GAE) per g and 2.35 mg Trolox equivalents (TE) per g. Meanwhile, it had the highest total flavonoid content (TFC) of 1.07 quercetin equivalents (QE) per g after 8 h of colonic fermentation. Dunaliella sp. and Isochrysis sp. showed comparable ferric reducing antioxidant power (FRAP) of 4.96 and 4.45 mg QE per g after 4 h of faecal reaction, respectively. p-hydroxybenzoic and caffeic acid almost completely decomposed after the intestine and fermented in the colon with the gut microflora. In Dunaliella sp. and Isochrysis sp., these phenolic acids were found in the colonic fermented residual, probably due to the presence of dietary fibre and the interactions with other components. All four species reached the highest values of SCFA production after 16 h, except Spirulina sp., which displayed the most increased total SCFA production after 8 h of fermentation. It is proposed that Spirulina sp. could be more beneficial to gut health.


Asunto(s)
Chlorella , Microalgas , Fermentación , Extractos Vegetales/química , Fenoles/química , Antioxidantes/química , Quercetina , Colon , Digestión
5.
Cancer Cell Int ; 22(1): 305, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207736

RESUMEN

Plants-based natural compounds are well-identified and recognized chemoprotective agents that can be used for primary and secondary cancer prevention, as they have proven efficacy and fewer side effects. In today's scenario, when cancer cases rapidly increase in developed and developing countries, the anti-cancerous plant-based compounds become highly imperative. Among others, the Asteraceae (Compositae) family's plants are rich in sesquiterpenoid lactones, a subclass of terpenoids with wide structural diversity, and offer unique anti-cancerous effects. These plants are utilized in folk medicine against numerous diseases worldwide. However, these plants are now a part of the modern medical system, with their sesquiterpenoid lactones researched extensively to find more effective and efficient cancer drug regimens. Given the evolving importance of sesquiterpenoid lactones for cancer research, this review comprehensively covers different domains in a spectrum of sesquiterpenoid lactones viz (i) Guaianolides (ii) Pseudoguaianolide (iii) Eudesmanolide (iv) Melampodinin A and (v) Germacrene, from important plants such as Cynara scolymus (globe artichoke), Arnica montana (wolf weeds), Spilanthes acmella, Taraxacum officinale, Melampodium, Solidago spp. The review, therefore, envisages being a helpful resource for the growth of plant-based anti-cancerous drug development.

6.
Chin Med ; 17(1): 114, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175969

RESUMEN

BACKGROUND: A biennial or perennial plant of the Apiaceae family, Eryngium caeruleum M. Bieb. is traditionally used in medicine as an antitoxic, diuretic, digestive, anti-inflammatory and analgesic drug. This plant is widely distributed in temperate regions around the world. Young leaves of the plant are used in cooking as aromatic cooked vegetables in various local products in Iran. PURPOSE: The current review aimed to highlight complete and updated information about the Eryngium caeruleum species, regarding botanical, ethnopharmacological, phytochemical data, pharmacological mechanisms as well as some nutritional properties. All this scientific evidence supports the use of this species in complementary medicine, thus opening new therapeutic perspectives for the treatment of some diseases. METHODS: The information provided in this updated review is collected from several scientific databases such as PubMed/Medline, ScienceDirect, Mendeley, Scopus, Web of Science and Google Scholar. Ethnopharmacology books and various professional websites were also researched. RESULTS: The phytochemical composition of the aerial parts and roots of E. caeruleum is represented by the components of essential oil (EO), phenolic compounds, saponins, protein, amino acids, fiber, carbohydrates, and mineral elements. The antioxidant, antimicrobial, antidiabetic, antihypoxic, and anti-inflammatory properties of E. caeruleum have been confirmed by pharmacological experiments with extracts using in vitro and in vivo methods. The syrup E. caeruleum relieved dysmenorrhea as effectively as Ibuprofen in the blinded, randomized, placebo-controlled clinical study. CONCLUSION: Current evidence from experimental pharmacological studies has shown that the different bioactive compounds present in the species E. caeruleum have multiple beneficial effects on human health, being potentially active in the treatment of many diseases. Thus, the traditional uses of this species are supported based on evidence. In future, translational and human clinical studies are necessary to establish effective therapeutic doses in humans.

7.
Front Pharmacol ; 13: 922388, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172192

RESUMEN

The current study aimed to assess the pharmacological potential of Justicia adhatoda by evaluating the presence of biologically active compounds using the gas chromatography-mass spectrometry approach and to undertake biological activities for the effectiveness of the present compounds using standard tests. A total of 21 compounds were identified in the gas chromatography-mass spectrometry analysis of the ethyl acetate fraction in which 14 of the identified compounds are recognized for their pharmacological potential in the literature. In total, four fractions (ethyl acetate, chloroform, n-hexane, and aqueous) were evaluated for pharmacological activities. In carrageenan-induced inflammation, the chloroform fraction exhibited high anti-inflammatory activity (46.51%). Similarly, the analgesic potential of ethyl acetate fraction was the most effective (300 mg/kg) in the acetic acid-induced test. Similarly, in the formalin test, ethyl acetate fraction exhibited maximum inhibition in both early (74.35%) and late phases (88.38). Maximum inhibition of pyrexia (77.98%) was recorded for the ethyl acetate fraction (300 mg/kg). In DPPH assay, the ethyl acetate fraction revealed the highest scavenging potential among other fractions (50 µg/ml resulted in 50.40% and 100 µg/ml resulted in 66.74% scavenging).

8.
Artículo en Inglés | MEDLINE | ID: mdl-35310031

RESUMEN

Prosopis is a regional cash crop that is widely grown in arid, semiarid, tropical, and subtropical areas. Compared with other legume plants, Prosopis is underutilized and has great potentialities. Prosopis not only is a good source of timber, construction, fencing material, and gum, but also can be applied for food, beverage, feed, and medicine. Prosopis contains numerous phytochemical constituents, including carbohydrates, proteins, fatty acids, minerals, and vitamins, while varieties of phenolic compounds have also been identified from different parts of Prosopis. Flavonoids (especially C-glycosyl flavonoids), tannins, catechin, 4'-O-methyl-gallocatechin, mesquitol, and quercetin O-glycosides are significant phenolic contents in Prosopis. Various extracts of Prosopis displayed a wide range of biological properties, such as antioxidant, antihyperglycemic, antibacterial, anthelmintic, antitumor, and anticancer. Additionally, Prosopis has the potential to be an ideal diet that contains abundant dietary fiber, minerals, galactomannans, and low-fat content. However, the bioactivity and pharmacological properties associated with Prosopis were influenced by the bioavailability of phytochemicals, various antinutritional compounds, and the interactions of protein and phenolic compounds. The bioavailability of Prosopis is mainly affected by phenolic contents, especially catechin. The antinutritional compounds negatively affect the nutritional qualities of Prosopis, which can be prevented by heating. The protein-phenolic compound interactions can help the human body to absorb quercetin from Prosopis. This literature review aimed to provide systematic information on the physical, biochemical, pharmacological, and nutritional properties and potential applications of Prosopis.

9.
Food Chem ; 386: 132794, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35349898

RESUMEN

Bioaccessibility and bioactivity of phenolic compounds in coffee beans relate to roasting and digestion process. This study aimed to estimate phenolic content, antioxidant potential, bioaccessibility, and changes in short chain fatty acids (SCFAs) production during in vitro digestion and colonic fermentation of commercial roasted (light, medium and dark) coffee beans. There was no significant difference found among all three different roasting levels. TPC and DPPH were enhanced 15 mg GAE/g and 60 mg TE/g during gastrointestinal digestion, respectively. For colonic fermentation, the highest TPC and FRAP of all coffee beans was found at 2 and 4 h, respectively. The gastric bioaccessibility of most of the phenolic compounds were relatively higher due to thermal phenolic degradation. Total SCFAs production was only up to 0.02 mM because of thermal polysaccharide decomposition. Light roasted beans exhibited relatively higher phenolic bioaccessibility, antioxidant activities and SCFAs production, which would be more beneficial to gut health.


Asunto(s)
Antioxidantes , Café , Antioxidantes/análisis , Café/química , Digestión , Ácidos Grasos Volátiles , Fermentación , Fenoles/análisis
10.
Antioxidants (Basel) ; 10(11)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34829641

RESUMEN

Culinary spices and herbs have been used to impart a characteristic flavour and aroma in food due to their appealing fragrance. Recently, bioactive compounds from herbs, especially phenolics, have gained much attention due to their potential health outcomes. The aim of this study was to characterize and quantify the phenolic compounds from 10 widely used Australian-grown herbs (oregano, rosemary, bay, basil, sage, fenugreek, dill, parsley, mint and thyme). For this purpose, liquid chromatography mass spectrometry (LC-MS) was used for the complete profiling of polyphenolic compounds and quantification of abundant phenolic compounds was completed with high-performance liquid chromatography-photodiode array detection (HPLC-PDA). Polyphenols from Australian-grown herbs were estimated through total phenolic content (TP), total flavonoids (TF) and total tannins (TT) along with their in-vitro antioxidant activities. Oregano and mint were estimated with the highest value of TP (140.59 ± 9.52 and 103.28 ± 8.08 mg GAE/g, milligram gallic acid equivalent/gram) while rosemary and mint had the highest TF (8.19 ± 0.74 and 7.05 ± 0.43 mg QE (quercetin equivalent)/g). In this study, eighty-four (84) phenolic compounds were screened and confirmed through LC-MS/MS by comparing their masses and fragmentation pattern with published libraries. The results of this study validate the use of these herbs as bioactives and their positive impact on human health.

11.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 201-211, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-34817347

RESUMEN

Pyracantha coccinea M.Roem. is considered as an important medicinal plant contributing remarkably to health and medicinal benefits. This is attributed to the presence of abundant polyphenols with powerful antioxidant properties. However, little research has been studied on the comprehensive identification and characterization of the phenolic compounds in areal parts of P. coccinea.  This study aimed to investigate, characterize, and quantify the phenolic profiles of P. coccinea through liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) and high-performance liquid chromatography-photodiode array (HPLC-PDA. Further, it showed a significantly higher value in total phenolic content (TPC) than that of total flavonoids (TFC) and tannins (TTC). As for antioxidant capacities, P. coccinea presented the highest activity in ABTS (7.12 ± 0.25 mg AAE/g dw) compared with DPPH, FRAP, and TAC assays. The LC-ESI-QTOF-MS/MS analysis detected 28 phenolic compounds, including phenolic acids (12), flavonoids (13), other polyphenols (2), and lignans (1) in P. coccinea samples. The results from HPLC-PDA indicated the chlorogenic acid (11.49 ± 1.89 mg/g) was the most abundant phenolic acid, while kaempferol (14.67 ± 2.17 mg/g) was the predominant flavonoid in P. coccinea. This research confirms the benefits of the P. coccinea plant as a potential source of natural antioxidants for the food and pharmaceutical industries.


Asunto(s)
Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión/métodos , Fenoles/farmacología , Pyracantha/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Antioxidantes/análisis , Antioxidantes/química , Flavonoides/análisis , Flavonoides/química , Flavonoides/farmacología , Lignanos/análisis , Lignanos/química , Lignanos/farmacología , Estructura Molecular , Fenoles/análisis , Fenoles/química , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Componentes Aéreos de las Plantas/química , Extractos Vegetales/análisis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Polifenoles/análisis , Polifenoles/química , Polifenoles/farmacología
12.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 189-200, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-34817348

RESUMEN

Prosopis farcta (Banks & Sol.) J.F.Macbr. is an emerging medicinal plant containing a diverse array of phytochemicals, including protein, fat, carbohydrate, fibre, alkaloids, fatty acids, glycosides, and polyphenols, with strong antioxidant potential. However, the screening and characterization of phenolic compounds in P. farcta is limited. This study is conducted to determine the polyphenol contents and their antioxidant activity in P. farcta leaves samples via liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) and high-performance liquid chromatography-photodiode array (HPLC-PDA). Total phenolic content (TPC), total flavonoid content (TFC), and total tannins content (TTC) were determined for polyphenol estimation. The antioxidant properties were measured by total antioxidant capacity (TAC), 2,2'-Diphenyl-2-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), and 2,2"²-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). LC-ESI-QTOF-MS/MS was used to identify and characterize 47 phenolic compounds, which mainly included phenolic acids (13), flavonoids (28), other polyphenols (4), lignans (1), and stilbenes (1). According to HPLC-PDA quantification, chlorogenic acid (9.78 ± 2.15 mg/g dw) was the most abundant phenolic acid, while the main flavonoids included catechin (12.73 ± 1.29 mg/g dw) and kaempferol (7.93 ± 1.47 mg/g dw). The study demonstrated the significance of P. farcta as a rich source of phenolic compounds with antioxidant capacity that can be widely used in food, beverage, feed, and pharmaceutical applications.


Asunto(s)
Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión/métodos , Fenoles/farmacología , Prosopis/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Antioxidantes/análisis , Antioxidantes/química , Catequina/análisis , Catequina/química , Catequina/farmacología , Ácido Clorogénico/análisis , Ácido Clorogénico/química , Ácido Clorogénico/farmacología , Flavonoides/análisis , Flavonoides/química , Flavonoides/farmacología , Estructura Molecular , Fenoles/análisis , Fenoles/química , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/análisis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Plantas Medicinales/química , Polifenoles/análisis , Polifenoles/química , Polifenoles/farmacología
13.
Antioxidants (Basel) ; 10(5)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064351

RESUMEN

Spices have long been used to improve food flavor, due to their appealing fragrance and sensory attributes. Nowadays, spices-based bioactives, particularly phenolic compounds, have gained attention due to their wide range of significant effects in biological systems. The present study was conducted to characterize the 12 widely used spices (allspice, black cardamom, black cumin, black pepper, cardamom, cinnamon, clove, cumin, fennel, nutmeg, star-anise, and turmeric) for their phenolics with the liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS2), polyphenols estimation, and their antioxidant potential. Total phenolics, total flavonoids, and total tannin content and their antioxidant activities were estimated in all spices. Clove and allspice had the highest value of total polyphenol content (215.14 and 40.49 mg gallic acid equivalent (GAE) per g of sample), while clove and turmeric had the highest total flavonoids (5.59 mg quercetin equivalent (QE) per g of sample) and total tannin contents (23.58 mg catechin equivalent (CE) per g of sample), respectively. On the other hand, black cumin and black pepper had the highest phosphomolybdate activity (15.61 and 15.43 mg ascorbic acid equivalent (AAE) per g of sample), while clove was almost identified with highest free radical scavenging capacity. A positive correlation was observed among phenolic compounds and antioxidant activities. In this quest, a total of 79 phenolic compounds were tentatively characterized by using LC-ESI-QTOF-MS2 including 26 phenolic acids, 33 flavonoids, 16 other polyphenols, and 4 lignans. The high-performance liquid chromatography coupled with photodiode array detector (HPLC-PDA) quantification of phenolic compounds exhibited higher phenolic acids. These results provided us some valuable information that spices have powerful antioxidant potential that can be further used in human food and animal feed as a supplement for different health promoting applications.

14.
Cancer Cell Int ; 21(1): 77, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33499881

RESUMEN

Prostate cancer (PC) is a multifactorial disease characterized by the abrogation of androgen receptor signaling. Advancement in microbiology techniques has highlighted the significant role of microRNAs (miRNAs) in the progression of PC cells from an androgen-dependent to an androgen-independent state. At that stage, prostate tumors also fail to respond to currently practiced hormone therapies. So, studies in recent decades are focused on investigating the anti-tumor effects of natural compounds in PC. Curcumin is widely recognized and now of huge prestige for its anti-proliferative abilities in different types of cancer. However, its limited solubility, compatibility, and instability in the aqueous phase are major hurdles when administering. Nanoformulations have proven to be an excellent drug delivery system for various drugs and can be used as potential delivery platforms for curcumin in PC. In this review, a shed light is given on the miRNAs-mediated regulation of androgen receptor (AR) signaling and miRNA-curcumin interplay in PC, as well as on curcumin-based nanoformulations that can be used as possible therapeutic solutions for PC.

15.
J Food Sci Technol ; 57(12): 4671-4687, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33087978

RESUMEN

Black pepper (Piper nigrum L.), black cumin (Nigella sativa L.) and black cardamom (Amomum subulatum) are considered as important spices, seasoning and folk medicines. They have a diverse range of bioactive compounds, especially for polyphenolic compounds. These polyphenolic compounds contribute to the putative health benefits of these black spices. The purpose of this study was to identify, characterize and quantify the phenolic profile of these black spices using LC-ESI-QTOF/MS and HPLC-PDA and to access their antioxidant potential. The LC-ESI-QTOF/MS analysis led to the identification of 138 phenolic compounds in three black spices. In HPLC-PDA, the p-hydroxybenzoic acid was the most predominant phenolic acid in black pepper and black cumin while diosmin was the most abundant flavonoid in black cardamom (> 20 mg/g). Furthermore, black spices were systematically measured for their TPC, TFC and TTC followed by measurement of their antioxidant activities using DPPH, FRAP and ABTS assays. Black pepper showed the highest TPC, TFC, TTC, DPPH and ABTS activities as compared to other black spices while black cardamom exhibited the highest FRAP activity. The obtained results highlight the importance of these black spices as promising sources of phenolic compounds and they could be potentially utilized in food, feed and nutraceutical industries.

16.
Mar Drugs ; 18(6)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599953

RESUMEN

Seaweed is an important food widely consumed in Asian countries. Seaweed has a diverse array of bioactive compounds, including dietary fiber, carbohydrate, protein, fatty acid, minerals and polyphenols, which contribute to the health benefits and commercial value of seaweed. Nevertheless, detailed information on polyphenol content in seaweeds is still limited. Therefore, the present work aimed to investigate the phenolic compounds present in eight seaweeds [Chlorophyta (green), Ulva sp., Caulerpa sp. and Codium sp.; Rhodophyta (red), Dasya sp., Grateloupia sp. and Centroceras sp.; Ochrophyta (brown), Ecklonia sp., Sargassum sp.], using liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS). The total phenolic content (TPC), total flavonoid content (TFC) and total tannin content (TTC) were determined. The antioxidant potential of seaweed was assessed using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay, a 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical scavenging assay and a ferric reducing antioxidant power (FRAP) assay. Brown seaweed species showed the highest total polyphenol content, which correlated with the highest antioxidant potential. The LC-ESI-QTOF-MS/MS tentatively identified a total of 54 phenolic compounds present in the eight seaweeds. The largest number of phenolic compounds were present in Centroceras sp. followed by Ecklonia sp. and Caulerpa sp. Using high-performance liquid chromatography-photodiode array (HPLC-PDA) quantification, the most abundant phenolic compound was p-hydroxybenzoic acid, present in Ulva sp. at 846.083 ± 0.02 µg/g fresh weight. The results obtained indicate the importance of seaweed as a promising source of polyphenols with antioxidant properties, consistent with the health potential of seaweed in food, pharmaceutical and nutraceutical applications.


Asunto(s)
Antioxidantes/análisis , Cromatografía Líquida de Alta Presión/métodos , Fenoles/análisis , Extractos Vegetales/química , Algas Marinas , Polifenoles
17.
Foods ; 9(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861820

RESUMEN

Hops (Humulus lupulus L.) and juniper berries (Juniperus communis L.) are two important medicinal plants widely used in the food, beverage, and pharmaceutical industries due to their strong antioxidant capacity, which is attributed to the presence of polyphenols. The present study is conducted to comprehensively characterize polyphenols from hops and juniper berries using liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF/MS) to assess their antioxidant capacity. For polyphenol estimation, total phenolic content, flavonoids and tannins were measured, while for antioxidant capacity, three different antioxidant assays including the 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant assay, the 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical cation decolorization assay and the ferric reducing-antioxidant power (FRAP) assay were used. Hops presented the higher phenolic content (23.11 ± 0.03 mg/g dw) which corresponded to its strong antioxidant activity as compared to the juniper berries. Using LC-ESI-QTOF/MS, a total of 148 phenolic compounds were tentatively identified in juniper and hops, among which phenolic acids (including hydroxybenzoic acids, hydroxycinnamic acids and hydroxyphenylpropanoic acids) and flavonoids (mainly anthocyanins, flavones, flavonols, and isoflavonoids) were the main polyphenols, which may contribute to their antioxidant capacity. Furthermore, the HPLC quantitative analysis showed that both samples had a high concentration of phenolic acids and flavonoids. In the HPLC quantification, the predominant phenolic acids in hops and juniper berries were chlorogenic acid (16.48 ± 0.03 mg/g dw) and protocatechuic acid (11.46 ± 0.03 mg/g dw), respectively. The obtained results highlight the importance of hops and juniper berries as a rich source of functional ingredients in different food, beverage, and pharmaceutical industries.

18.
Antioxidants (Basel) ; 8(9)2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443527

RESUMEN

Heat stress (HS) causes oxidative stress, which compromises broiler performance and meat quality. The aim of this study was to determine whether dietary antioxidants could be used as an amelioration strategy. Seventy-two day-old-male Ross-308 chicks were exposed to either thermoneutral or cyclical heat stress conditions. Diets were either control commercial diet (CON), CON plus betaine (BET), or with a combination of betaine, selenized yeast, and vitamin E (BET + AOX). Heat stress increased the rectal temperature (p < 0.001), respiration rate (p < 0.001), decreased blood pCO2 (p = 0.002), and increased blood pH (p = 0.02), which indicated the HS broilers had respiratory alkalosis. Final body weight was decreased by HS (p < 0.001), whereas it was improved with BET (p = 0.05). Heat stress reduced cooking loss (p = 0.007) and no effect on drip loss, while BET decreased the drip loss (p = 0.01). Heat stress reduced the myofibril fragmentation index (p < 0.001) and increased thiobarbituric acid reactive substances (p < 0.001), while these were improved with the combination of BET + AOX (p = 0.003). In conclusion, BET overall improved growth rates and product quality in this small university study, whereas some additional benefits were provided by AOX on product quality in both TN and HS broilers.

19.
Recent Pat Food Nutr Agric ; 10(1): 34-47, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30039769

RESUMEN

OBJECTIVES: The present research was tailored to explore the prophylactic role of garlic extracts to mitigate some diet related malfunctions. The recent patents regarding antidiabetic agents (US 20140147528 A1) and garlic compositions (US 20110129580 A1) also helped in the study design. METHODS: Bioevaluation trials were conducted on Sprague Dawley rats by feeding garlic extracts for a period of sixty days. Accordingly, three studies were carried out comprising of normal, hyperglycemic and hypercholesterolemic rats. Drink & feed intakes and weight gain were measured throughout the trial. After sixty days, collected sera from rats were analyzed for serum cholesterol, LDL, HDL & triglyceride levels and glucose & insulin concentrations. Finally, the data obtained were subjected to statistical modeling. RESULTS: Results concerning the bioevaluation trials revealed that maximum 12.39% reduction was observed in serum cholesterol in Study III (hypercholesterolemic rats) on the provision of garlic supercritical extract (nutraceutical diet) followed by 10.24% decline in rats fed on solvent extract supplemented diet (functional diet). Regarding LDL, maximum decrease (17.02%) was recorded on the administration of diet having garlic supercritical extract to the hypercholesterolemic rats. While in Study II (hyperglycemic rats) maximum decrease of 11.03% in glucose level was recorded in rats fed on supercritical extract containing diet. In the same group maximum increase in insulin (7.95%) was recorded. CONCLUSIONS: From the current investigations, it can be concluded that garlic based designer foods possess the prophylactic perspectives to alleviate the risk of metabolic ailments. Thus, it can be used in the diet based therapeutic interventions as an adjuvant to pharmaceuticals.


Asunto(s)
Dieta , Ajo/química , Extractos Vegetales/farmacología , Animales , Glucemia/efectos de los fármacos , Insulina/sangre , Lípidos/sangre , Masculino , Extractos Vegetales/química , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA