Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmacol Res ; 195: 106876, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536638

RESUMEN

There is a lack of FDA-approved tocolytics for the management of preterm labor (PL). In prior drug discovery efforts, we identified mundulone and mundulone acetate (MA) as inhibitors of in vitro intracellular Ca2+-regulated myometrial contractility. In this study, we probed the tocolytic potential of these compounds using human myometrial samples and a mouse model of preterm birth. In a phenotypic assay, mundulone displayed greater efficacy, while MA showed greater potency and uterine-selectivity in the inhibition of intracellular-Ca2+ mobilization. Cell viability assays revealed that MA was significantly less cytotoxic. Organ bath and vessel myography studies showed that only mundulone exerted inhibition of myometrial contractions and that neither compounds affected vasoreactivity of ductus arteriosus. A high-throughput combination screen identified that mundulone exhibits synergism with two clinical-tocolytics (atosiban and nifedipine), and MA displayed synergistic efficacy with nifedipine. Of these combinations, mundulone+atosiban demonstrated a significant improvement in the in vitro therapeutic index compared to mundulone alone. The ex vivo and in vivo synergism of mundulone+atosiban was substantiated, yielding greater tocolytic efficacy and potency on myometrial tissue and reduced preterm birth rates in a mouse model of PL compared to each single agent. Treatment with mundulone after mifepristone administration dose-dependently delayed the timing of delivery. Importantly, mundulone+atosiban permitted long-term management of PL, allowing 71% dams to deliver viable pups at term (>day 19, 4-5 days post-mifepristone exposure) without visible maternal and fetal consequences. Collectively, these studies provide a strong foundation for the development of mundulone as a single or combination tocolytic for management of PL.


Asunto(s)
Productos Biológicos , Trabajo de Parto Prematuro , Nacimiento Prematuro , Tocolíticos , Femenino , Recién Nacido , Ratones , Animales , Humanos , Tocolíticos/farmacología , Tocolíticos/uso terapéutico , Nacimiento Prematuro/tratamiento farmacológico , Nifedipino/farmacología , Nifedipino/uso terapéutico , Mifepristona/uso terapéutico , Productos Biológicos/uso terapéutico , Trabajo de Parto Prematuro/tratamiento farmacológico
2.
mBio ; 11(5)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109764

RESUMEN

Metals are essential nutrients that all living organisms acquire from their environment. While metals are necessary for life, excess metal uptake can be toxic; therefore, intracellular metal levels are tightly regulated in bacterial cells. Staphylococcus aureus, a Gram-positive bacterium, relies on metal uptake and metabolism to colonize vertebrates. Thus, we hypothesized that an expanded understanding of metal homeostasis in S. aureus will lead to the discovery of pathways that can be targeted with future antimicrobials. We sought to identify small molecules that inhibit S. aureus growth in a metal-dependent manner as a strategy to uncover pathways that maintain metal homeostasis. Here, we demonstrate that VU0026921 kills S. aureus through disruption of metal homeostasis. VU0026921 activity was characterized through cell culture assays, transcriptional sequencing, compound structure-activity relationship, reactive oxygen species (ROS) generation assays, metal binding assays, and metal level analyses. VU0026921 disrupts metal homeostasis in S. aureus, increasing intracellular accumulation of metals and leading to toxicity through mismetalation of enzymes, generation of reactive oxygen species, or disruption of other cellular processes. Antioxidants partially protect S. aureus from VU0026921 killing, emphasizing the role of reactive oxygen species in the mechanism of killing, but VU0026921 also kills S. aureus anaerobically, indicating that the observed toxicity is not solely oxygen dependent. VU0026921 disrupts metal homeostasis in multiple Gram-positive bacteria, leading to increased reactive oxygen species and cell death, demonstrating the broad applicability of these findings. Further, this study validates VU0026921 as a probe to further decipher mechanisms required to maintain metal homeostasis in Gram-positive bacteria.IMPORTANCEStaphylococcus aureus is a leading agent of antibiotic-resistant bacterial infections in the world. S. aureus tightly controls metal homeostasis during infection, and disruption of metal uptake systems impairs staphylococcal virulence. We identified small molecules that interfere with metal handling in S. aureus to develop chemical probes to investigate metallobiology in this organism. Compound VU0026921 was identified as a small molecule that kills S. aureus both aerobically and anaerobically. The activity of VU0026921 is modulated by metal supplementation, is enhanced by genetic inactivation of Mn homeostasis genes, and correlates with increased cellular reactive oxygen species. Treatment with VU0026921 causes accumulation of multiple metals within S. aureus cells and concomitant upregulation of genes involved in metal detoxification. This work defines a small-molecule probe for further defining the role of metal toxicity in S. aureus and validates future antibiotic development targeting metal toxicity pathways.


Asunto(s)
Antibacterianos/farmacología , Bacterias Grampositivas/metabolismo , Homeostasis/efectos de los fármacos , Metales/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Citoplasma/química , Especies Reactivas de Oxígeno/metabolismo , Bibliotecas de Moléculas Pequeñas/síntesis química , Staphylococcus aureus/metabolismo , Virulencia
3.
Proc Natl Acad Sci U S A ; 114(32): E6652-E6659, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739897

RESUMEN

Gram-positive bacteria cause the majority of skin and soft tissue infections (SSTIs), resulting in the most common reason for clinic visits in the United States. Recently, it was discovered that Gram-positive pathogens use a unique heme biosynthesis pathway, which implicates this pathway as a target for development of antibacterial therapies. We report here the identification of a small-molecule activator of coproporphyrinogen oxidase (CgoX) from Gram-positive bacteria, an enzyme essential for heme biosynthesis. Activation of CgoX induces accumulation of coproporphyrin III and leads to photosensitization of Gram-positive pathogens. In combination with light, CgoX activation reduces bacterial burden in murine models of SSTI. Thus, small-molecule activation of CgoX represents an effective strategy for the development of light-based antimicrobial therapies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coproporfirinógeno Oxidasa/metabolismo , Coproporfirinas/biosíntesis , Fármacos Fotosensibilizantes/metabolismo , Fototerapia , Infecciones Cutáneas Estafilocócicas/enzimología , Infecciones Cutáneas Estafilocócicas/terapia , Staphylococcus aureus/metabolismo , Animales , Proteínas Bacterianas/genética , Coproporfirinógeno Oxidasa/genética , Coproporfirinas/genética , Modelos Animales de Enfermedad , Ratones , Staphylococcus aureus/genética
4.
Cell Chem Biol ; 23(11): 1351-1361, 2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27773628

RESUMEN

The rising problem of antimicrobial resistance in Staphylococcus aureus necessitates the discovery of novel therapeutic targets for small-molecule intervention. A major obstacle of drug discovery is identifying the target of molecules selected from high-throughput phenotypic assays. Here, we show that the toxicity of a small molecule termed '882 is dependent on the constitutive activity of the S. aureus virulence regulator SaeRS, uncovering a link between virulence factor production and energy generation. A series of genetic, physiological, and biochemical analyses reveal that '882 inhibits iron-sulfur (Fe-S) cluster assembly most likely through inhibition of the Suf complex, which synthesizes Fe-S clusters. In support of this, '882 supplementation results in decreased activity of the Fe-S cluster-dependent enzyme aconitase. Further information regarding the effects of '882 has deepened our understanding of virulence regulation and demonstrates the potential for small-molecule modulation of Fe-S cluster assembly in S. aureus and other pathogens.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Factores de Virulencia/metabolismo , Aconitato Hidratasa/metabolismo , Antibacterianos/química , Descubrimiento de Drogas , Humanos , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Factores de Transcripción/metabolismo , Virulencia/efectos de los fármacos
5.
ACS Chem Neurosci ; 4(9): 1278-86, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-23730969

RESUMEN

The G-protein activated, inward-rectifying potassium (K(+)) channels, "GIRKs", are a family of ion channels (Kir3.1-Kir3.4) that has been the focus of intense research interest for nearly two decades. GIRKs are comprised of various homo- and heterotetrameric combinations of four different subunits. These subunits are expressed in different combinations in a variety of regions throughout the central nervous system and in the periphery. The body of GIRK research implicates GIRK in processes as diverse as controlling heart rhythm, to effects on reward/addiction, to modulation of response to analgesics. Despite years of GIRK research, very few tools exist to selectively modulate GIRK channels' activity and until now no tools existed that potently and selectively activated GIRKs. Here we report the development and characterization of the first truly potent, effective, and selective GIRK activator, ML297 (VU0456810). We further demonstrate that ML297 is active in two in vivo models of epilepsy, a disease where up to 40% of patients remain with symptoms refractory to present treatments. The development of ML297 represents a truly significant advancement in our ability to selectively probe GIRK's role in physiology as well as providing the first tool for beginning to understand GIRK's potential as a target for a diversity of therapeutic indications.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/agonistas , Compuestos de Fenilurea/uso terapéutico , Pirazoles/uso terapéutico , Convulsiones/tratamiento farmacológico , Animales , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Señalización del Calcio/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Electrochoque/efectos adversos , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Inyecciones Intraperitoneales , Ratones , Microsomas Hepáticos/metabolismo , Estructura Molecular , Técnicas de Placa-Clamp , Pentilenotetrazol/toxicidad , Compuestos de Fenilurea/administración & dosificación , Compuestos de Fenilurea/química , Compuestos de Fenilurea/farmacología , Pirazoles/administración & dosificación , Pirazoles/química , Pirazoles/farmacología , Ratas , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Proteínas Recombinantes/efectos de los fármacos , Convulsiones/etiología , Ácido Valproico/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA