Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 18(9): e0291125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37713406

RESUMEN

INTRODUCTION: The liver, the most important metabolic organ of the body, performs a wide variety of vital functions. Hepatic cell injury occurs by the activation of reactive oxygen species (ROS) that are generated by carbon tetrachloride (CCl4), xenobiotics, and other toxic substances through cytochrome P450-dependent steps resulting from the covalent bond formation with lipoproteins and nucleic acids. Observing the urgent state of hepatotoxic patients worldwide, different medicinal plants and their properties can be explored to combat such free radical damage to the liver. In vivo and in silico studies were designed and conducted to evaluate the antioxidant and hepatoprotective properties of Gynura procumbens in rats. MATERIALS AND METHODS: Gynura procumbens leaves were collected and extracted using 70% ethanol. The required chemicals CCl4, standard drug (silymarin), and blood serum analysis kits were stocked. The in vivo tests were performed in 140 healthy Wister albino rats of either sex under well-controlled parameters divided into 14 groups, strictly maintaining Institutional Animal Ethics Committee (IEAC) protocols. For the histopathology study, 10% buffered neutral formalin was used for organ preservation. Later the specimens were studied under a fluorescence microscope. In silico molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies were performed, and the results were analyzed statistically. RESULTS AND DISCUSSION: Gynura procumbens partially negate the deleterious effect of carbon tetrachloride on normal weight gain in rats. The elevated level of serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), alkaline phosphatase (ALP), creatinine, LDH, total cholesterol (TC), low-density lipoprotein (LDL), triglycerides (TG), malondialdehyde (MDA), deoxyribonucleic acid (DNA) fragmentation ranges, gamma-glutamyl transferase (γ-GT) in CCl4 treated groups were decreased by both standard drug silymarin and G. procumbens leaf extract. We have found significant & highly significant changes statistically for different doses, here p<0.05 & p<0.01, respectively. On the other hand, G. procumbens and silymarin displayed Statistically significant (p<0.05) and high significant(p<0.01) increased levels of HDL, CAT SOD (here p<0.05 & p<0.01 for different doses) when the treatment groups were compared with the disease control group. Because the therapeutic activity imparted by plants and drugs accelerates the movement of the disturbed pathophysiological state toward the healthy state. In the molecular docking analysis, G. procumbens phytoconstituents performed poorly against transforming growth factor-beta 1 (TGF-ß1) compared to the control drug silymarin. In contrast, 26 phytoconstituents scored better than the control bezafibrate against peroxisome proliferator-activated receptor alpha (PPAR-α). The top scoring compounds for both macromolecules were observed to form stable complexes in the molecular dynamics simulations. Flavonoids and phenolic compounds performed better than other constituents in providing hepatoprotective activity. It can, thus, be inferred that the extract of G. procumbens showed good hepatoprotective properties in rats.


Asunto(s)
Asteraceae , Enfermedad Hepática Inducida por Sustancias y Drogas , Animales , Ratas , Ratas Wistar , Tetracloruro de Carbono/toxicidad , Simulación del Acoplamiento Molecular , Alanina Transaminasa , Glutamatos
2.
Molecules ; 28(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049912

RESUMEN

The pharmacological actions of benzylisoquinoline alkaloids are quite substantial, and have recently attracted much attention. One of the principle benzylisoquinoline alkaloids has been found in the unripe seed capsules of Papaver somniferum L. Although it lacks analgesic effects and is unrelated to the compounds in the morphine class, it is a peripheral vasodilator and has a direct effect on vessels. It is reported to inhibit the cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) phosphodiesterase in smooth muscles, and it has been observed to increase intracellular levels of cAMP and cGMP. It induces coronary, cerebral, and pulmonary artery dilatation and helps to lower cerebral vascular resistance and enhance cerebral blood flow. Current pharmacological research has revealed that papaverine demonstrates a variety of biological activities, including activity against erectile dysfunction, postoperative vasospasms, and pulmonary vasoconstriction, as well as antiviral, cardioprotective, anti-inflammatory, anticancer, neuroprotective, and gestational actions. It was recently demonstrated that papaverine has the potential to control SARS-CoV-2 by preventing its cytopathic effect. These experiments were carried out both in vitro and in vivo and require an extensive understanding of the mechanisms of action. With its multiple mechanisms, papaverine can be considered as a natural compound that is used to develop therapeutic drugs. To validate its applications, additional research is required into its precise therapeutic mechanisms as well as its acute and chronic toxicities. Therefore, the goal of this review is to discuss the major studies and reported clinical studies looking into the pharmacological effects of papaverine and the mechanisms of action underneath these effects. Additionally, it is recommended to conduct further research via significant pharmacodynamic and pharmacokinetic studies.


Asunto(s)
Alcaloides , Bencilisoquinolinas , COVID-19 , Humanos , Papaverina/farmacología , Opio , SARS-CoV-2 , Alcaloides/farmacología
3.
Molecules ; 27(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35889247

RESUMEN

Medicinal plants have considerable potential as antimicrobial agents due to the presence of secondary metabolites. This comprehensive overview aims to summarize the classification, morphology, and ethnobotanical uses of Euphorbia neriifolia L. and its derived phytochemicals with the recent updates on the pharmacological properties against emerging infectious diseases, mainly focusing on bacterial, viral, fungal, and parasitic infections. The data were collected from electronic databases, including Google Scholar, PubMed, Semantic Scholar, ScienceDirect, and SpringerLink by utilizing several keywords like 'Euphorbia neriifolia', 'phytoconstituents', 'traditional uses', 'ethnopharmacological uses', 'infectious diseases', 'molecular mechanisms', 'COVID-19', 'bacterial infection', 'viral infection', etc. The results related to the antimicrobial actions of these plant extracts and their derived phytochemicals were carefully reviewed and summarized. Euphol, monohydroxy triterpene, nerifoliol, taraxerol, ß-amyrin, glut-5-(10)-en-1-one, neriifolione, and cycloartenol are the leading secondary metabolites reported in phytochemical investigations. These chemicals have been shown to possess a wide spectrum of biological functions. Different extracts of E. neriifolia exerted antimicrobial activities against various pathogens to different extents. Moreover, major phytoconstituents present in this plant, such as quercetin, rutin, friedelin, taraxerol, epitaraxerol, taraxeryl acetate, 3ß-friedelanol, 3ß-acetoxy friedelane, 3ß-simiarenol, afzelin, 24-methylene cycloarenol, ingenol triacetate, and ß-amyrin, showed significant antimicrobial activities against various pathogens that are responsible for emerging infectious diseases. This plant and the phytoconstituents, such as flavonoids, monoterpenoids, diterpenoids, triterpenoids, and alkaloids, have been found to have significant antimicrobial properties. The current evidence suggests that they might be used as leads in the development of more effective drugs to treat emerging infectious diseases, including the 2019 coronavirus disease (COVID-19).


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Enfermedades Transmisibles Emergentes , Euphorbia , Enfermedades Transmisibles Emergentes/tratamiento farmacológico , Etnobotánica , Etnofarmacología , Humanos , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoterapia , Extractos Vegetales/farmacología
4.
Artículo en Inglés | MEDLINE | ID: mdl-35211179

RESUMEN

Lepidagathis hyalina Nees is an ethnomedicinally potential Asian herb, locally used to treat cardiovascular diseases and coughs. The study was intended to evaluate qualitative and quantitative investigation to ensure numerous pharmacological properties of methanol extracts of L. hyalina Ness root (MELHR). MELHR manifested strong radical scavenging activity in the reducing power and DPPH (1, 1-diphenyl-2-picrylhydrazyl) assays, and phenol and flavonoid in the quantitative assays. In the study of the thrombolytic assay, MELHR showed moderate explicit percentage of clot lysis (29.39 ± 1.40%) with moderate (135.35 µg/mL) toxic properties. The in vitro anti-inflammatory activity was evaluated by the inhibition of hypotonicity-induced RBC hemolysis, whereas the plant extract exhibited a significant (pp ˂ 0.005) dose-dependent inhibition and the highest inhibition was found 55.01 ± 3.22% at 1000 µg/mL concentration. Moreover, the MELHR also showed significant (p < 0.005) dose-dependent potentiality on protein denaturation which is considered as antiarthritic activity, and the peak inhibition was found significant (71.97 ± 2.71%) at 1000 µg/mL concentration. MELHR also exhibited the dose-dependent and statistically significant anthelmintic potential on aquarium worm (Tubifex tubifex). So, the present investigation suggests that L. hyalina could be the best choice for the management of cardiovascular, inflammation, arthritis, and anthelmintic diseases. Further investigation should be necessary to determine behind the mechanism of bioactivity and therapeutic potential of this plant.

5.
Artículo en Inglés | MEDLINE | ID: mdl-35096119

RESUMEN

BACKGROUND: Diabetes mellitus is one of the most notable health dilemmas. Analyzing plants for new antidiabetic remedies has become an impressive territory for life science researchers. Gynura procumbens has long been used to treat diabetes. Thus, we strived to ascertain the hypoglycemic potentiality of extract of leaves of G. procumbens by in vivo and in silico approaches. METHODS: Fresh leaves of G. procumbens were collected and shade-dried to prepare ethanolic extracts to evaluate pharmacological parameters. Diabetes was induced in rats via injecting alloxan through the intraperitoneal route at a dose of 150 mg/kg body weight. Humalyzer 3000 was used to perform a biochemical assay of collected samples from rats. Anti-hyperglycemic activity study along with overdose toxicity test was performed. The pharmacological activity of this plant was also evaluated through a molecular docking study. This in silico study investigated the binding affinity of natural ligands from G. procumbens against glycoside hydrolase enzymes. RESULTS: We detected a peak plasma concentration of G. procumbens at 3 hours 45 minutes that is roughly similar to the peak plasma concentration of metformin. Again, in OGTT and anti-hyperglycemic tests, it has been ascertained that both plant extract and metformin can exert significant (P < 0.05) and highly significant (P < 0.01) hypoglycemic activity in a dose-dependent manner. Metformin exhibited better therapeutic efficacy than that of plant extract, but it possessed null statistical significance. Also, our safety profile expressed that, similar to metformin, the plant extract can restore the disturbed pathological state in a dose-oriented approach with a wide safety margin. In silico study also validated the potentialities of natural constituents of G. procumbens. Conclusion. This study suggested that G. procumbens can be considered as potential antidiabetic plant. Robust and meticulous investigation regarding plant chemistry and pharmacology in the future may bring about a new dimension that will aid in discovering antidiabetic drugs from this plant in the diabetes management system.

6.
Heliyon ; 7(11): e08225, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34816025

RESUMEN

Herbal remedies have been used in many cultures for decades to treat illnesses. These medicinal plants have been found to contain various phytochemical compounds that can help to cure mild to severe illnesses. The inadequacies of conventional medicines and their unusual side effects sparked a determined search for alternative natural therapeutic agents. Another reason for this hunt could be the availability and fewer side effects of natural products. T. arjuna is widely used in traditional medicine to alleviate various diseases like relieving pain, ameliorating diabetes, mitigating inflammation, and back-pedaling of depression. In this study, the ethanolic extract of T. arjuna possesses a promising effect on the animal model (p < 0.05/p < 0.01) as an antihyperglycemic, analgesic, anti-inflammatory, and antidepressant agent, but in a dose-dependent manner. The lower dose of T. arjuna was found to be capable of reversing the disturbed physiological state at a significant level (p < 0.05). However, a higher dose of T. arjuna exerts better therapeutic effects for those diseases. This animal study aims to evaluate the anti-diabetic, anti-depressant, and anti-inflammatory properties of T. arjuna compared to conventional marketed drugs. We will perform an in-silico study for active constituents of T. arjuna against their proposed targets and look for the molecular cascade on their claimed pharmacological properties. This study shows that different doses of T. arjuna bark extracts give similar therapeutic responses compared with established marketed drugs in managing hyperglycemia, stress-induced depression, and inflammation. Besides, our docking study reveals that flavonoids and triterpenoid active constituents of T. arjuna play an important role in its usefulness. This study, therefore, scientifically confirmed the traditional use of this medicinal plant in the management of several diseased conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA