Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2089, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453961

RESUMEN

Hyperthermic intraperitoneal chemotherapy's role in ovarian cancer remains controversial, hindered by limited understanding of hyperthermia-induced tumor cellular changes. This limits developing potent combinatory strategies anchored in hyperthermic intraperitoneal therapy (HIPET). Here, we perform a comprehensive multi-omics study on ovarian cancer cells under hyperthermia, unveiling a distinct molecular panorama, primarily characterized by rapid protein phosphorylation changes. Based on the phospho-signature, we pinpoint CDK1 kinase is hyperactivated during hyperthermia, influencing the global signaling landscape. We observe dynamic, reversible CDK1 activity, causing replication arrest and early mitotic entry post-hyperthermia. Subsequent drug screening shows WEE1 inhibition synergistically destroys cancer cells with hyperthermia. An in-house developed miniaturized device confirms hyperthermia and WEE1 inhibitor combination significantly reduces tumors in vivo. These findings offer additional insights into HIPET, detailing molecular mechanisms of hyperthermia and identifying precise drug combinations for targeted treatment. This research propels the concept of precise hyperthermic intraperitoneal therapy, highlighting its potential against ovarian cancer.


Asunto(s)
Hipertermia Inducida , Neoplasias Ováricas , Femenino , Humanos , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Multiómica , Mitosis , Neoplasias Ováricas/terapia , Neoplasias Ováricas/patología
2.
Cell Rep ; 41(13): 111890, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36577369

RESUMEN

Ovarian cancer (OC) remains a clinical challenge for its difficulty in early diagnosis and insensitivity to treatments. Gut microbiota modulate multiple carcinoma progression through immunoregulation. The relationship between OC and gut microbiota has not been fully characterized. We find that the feces of patients with OC demonstrate different characteristics from benign controls. After fecal microbiota transplantation (FMT) from patients with OC into OC-bearing mice, the tumor development accelerates. Further, an Akkermansia supplementation with FMT significantly suppresses OC progression in mice. RNA sequencing of tumors shows that T cell activation pathways are upregulated after Akkermansia supplementation with FMT. Moreover, acetate accumulation accompanies Akkermansia abundance elevation, which is associated with enhanced interferon γ (IFNγ) secretion of CD8+ T cells and also its tumor-killing property. This work highlights the importance of protective gut microbiome in immune surveillance of OC, which connects accumulation of acetate and the cytotoxic function of CD8+ T cells by increasing IFNγ secretion.


Asunto(s)
Trasplante de Microbiota Fecal , Neoplasias Ováricas , Ratones , Animales , Femenino , Humanos , Akkermansia , Linfocitos T CD8-positivos , Heces , Neoplasias Ováricas/terapia , Suplementos Dietéticos
3.
Reprod Biomed Online ; 42(3): 505-519, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33388265

RESUMEN

RESEARCH QUESTION: Can melatonin provide non-invasive ovarian protection against damage caused by cis-diamminedichloroplatinum (cisplatin) and preserve fertility in female cancer patients? And if so, what is the possible mechanism? DESIGN: Athymic BALB/c nude tumour-bearing female mice were used to demonstrate whether melatonin affects the antineoplastic effect when co-administrated with cisplatin. Sexually mature and newborn C57BL/6 female mice were used to evaluate the potential effects of melatonin on the ovarian follicle pool, pregnancy rate and litter number in cisplatin-treated mice. The ovaries underwent immunohistochemical, TdT (terminal deoxynucleotidyl transferase)-mediated dUTP nick-end labelling (TUNEL) and gene array analysis to explore the underlying mechanism. In addition, granulosa cells were isolated to investigate the potential protective mechanism of melatonin. RESULTS: Melatonin not only enhanced the anti-cancer effect of cisplatin in tumour-bearing nude mice, but also reduced ovarian toxicity and preserved long-term fertility in cisplatin-treated C57BL/6 female mice. When co-administrated, melatonin was able to reduce the DNA damage and toxic effects on lipid peroxidation in the ovaries caused by cisplatin. Specifically, melatonin was able to largely restore lipid peroxidation in granulosa cells and thus prevent ovarian follicles from being depleted. CONCLUSIONS: Melatonin has the potential to be used as a chemotherapeutic adjuvant to simultaneously improve the outcome of anti-cancer treatment and preserve ovarian function during cisplatin chemotherapy. Notably, its properties of DNA protection and antioxidant effects on follicles may benefit female cancer survivors and prevent premature ovarian failure as well as fertility loss caused by chemotherapy.


Asunto(s)
Antineoplásicos/efectos adversos , Antioxidantes/uso terapéutico , Cisplatino/efectos adversos , Infertilidad Femenina/prevención & control , Melatonina/uso terapéutico , Ovario/efectos de los fármacos , Animales , Animales Recién Nacidos , Evaluación Preclínica de Medicamentos , Femenino , Infertilidad Femenina/inducido químicamente , Ratones Desnudos
4.
PLoS One ; 9(7): e100314, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24999622

RESUMEN

OBJECTIVE: The role of Quercetin in ovarian cancer treatment remains controversial, and the mechanism is unknown. The aim of this study was to investigate the therapeutic effects of Quercetin in combination with Cisplatin and other anti-neoplastic drugs in ovarian cancer cells both in vitro and in vivo, along with the molecular mechanism of action. METHODS: Quercetin treatment at various concentrations was examined in combination with Cisplatin, taxol, Pirarubicin and 5-Fu in human epithelial ovarian cancer C13* and SKOV3 cells. CCK8 assay and Annexin V assay were for cell viability and apoptosis analysis, immunofluorescence assay, DCFDA staining and realtime PCR were used for reactive oxygen species (ROS)-induced injury detection and endogenous antioxidant enzymes expression. Athymic BALB/c-nu nude mice were injected with C13*cells to obtain a xenograft model for in vivo studies. Immunohistochemical analysis was carried out to evaluate the ROS-induced injury and SOD1 activity of xenograft tumors. RESULTS: Contrary to the pro-apoptotic effect of high concentration (40 µM-100 µM) of Quercetin, low concentrations (5 µM-30 µM) of Quercetin resulted in varying degrees of attenuation of cytotoxicity of Cisplatin treatment when combined with Cisplatin. Similar anti-apoptotic effects were observed when Quercetin was combined with other anti-neoplastic agents: Taxol, Pirarubicin and 5-Fluorouracil (5-Fu). Low concentrations of Quercetin were observed to suppress ROS-induced injury, reduce intracellular ROS level and increase the expression of endogenous antioxidant enzymes, suggesting a ROS-mediated mechanism of attenuating anti-neoplastic drugs. In xenogeneic model, Quercetin led to a substantial reduction of therapeutic efficacy of Cisplatin along with enhancing the endogenous antioxidant enzyme expression and reducing ROS-induced damage in xenograft tumor tissue. CONCLUSION: Taken together, these data suggest that Quercetin at low concentrations attenuate the therapeutic effects of Cisplatin and other anti-neoplastic drugs in ovarian cancer cells by reducing ROS damage. Quercetin supplementation during ovarian cancer treatment may detrimentally affect therapeutic response.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Neoplasias Ováricas/patología , Quercetina/farmacología , Animales , Antioxidantes/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Antagonismo de Drogas , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Desnudos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA