Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 705-712, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646758

RESUMEN

The composition and stability of soil aggregates are important indicators for measuring soil quality, which would be affected by land use changes. Taking wetlands with different returning years (2 and 15 years) in the Yellow River Delta as the research object, paddy fields and natural wetlands as control, we analyzed the changes in soil physicochemical properties and soil aggregate composition. The results showed that soil water content, total organic carbon, dissolved organic carbon and total phosphorus of the returning soil (0-40 cm) showed an overall increasing trend with returning period, while soil pH and bulk density was in adverse. There was no significant change in clay content, electrical conductivity, and total nitrogen content. The contents of macro-aggregates and micro-aggregates showed overall increasing and decreasing trend with returning period, respectively. The stability of aggregates in the topsoil (0-10 cm) increased with returning years. Geometric mean diameter and mean weight diameter increased by 8.9% and 40.4% in the 15th year of returning, respectively, while the mass proportion of >2.5 mm fraction decreased by 10.5%. There was no effect of returning on aggregates in subsoil (10-40 cm). Our results indicated that returning paddy field to wetland in the Yellow River Delta would play a positive role in improving soil structure and aggregate stability.


Asunto(s)
Oryza , Ríos , Suelo , Humedales , Suelo/química , China , Ríos/química , Oryza/crecimiento & desarrollo , Oryza/química , Monitoreo del Ambiente , Agricultura/métodos , Fósforo/análisis , Fósforo/química , Carbono/análisis , Carbono/química
2.
J Agric Food Chem ; 72(10): 5293-5306, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38441033

RESUMEN

The present study evaluated the potential of endogenous enzymes and probiotics in transforming bioactive metabolites to reduce the purgative effect and improve the functional activity of Cassiae Semen and verified and revealed the biotransformation effect of endogenous enzymes. Although probiotics, especially Lactobacillus rhamnosus, exerted the transformation effect, the endogenous enzymes proved to be more effective in transforming the components of Cassiae Semen. After biotransformation by endogenous enzymes for 12 h, the levels of six anthraquinones in Cassiae Semen increased by at least 2.98-fold, and free anthraquinones, total phenolics, and antioxidant activity also showed significant improvement, accompanied by an 82.2% reduction in combined anthraquinones responsible for the purgative effect of Cassiae Semen. Further metabolomic analysis revealed that the biotransformation effect of endogenous enzymes on the bioactive metabolites of Cassiae Semen was complex and diverse, and the biotransformation of quinones and flavonoids was particularly prominent and occurred by three primary mechanisms, hydrolyzation, methylation, and dimerization, might under the action of glycosyl hydrolases, SAM-dependent methyltransferases, and CYP450s. Accordingly, biotransformation by endogenous enzymes emerges as a mild, economical, food safety risk-free, and effective strategy to modify Cassiae Semen into an excellent functional food.


Asunto(s)
Cassia , Medicamentos Herbarios Chinos , Probióticos , Catárticos , Antraquinonas , Probióticos/análisis , Semillas/química , Biotransformación
3.
Aquat Toxicol ; 258: 106508, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37001197

RESUMEN

Carbon quantum dots (CQDs) have received increasing attention in recent years for their potential toxicity. However, little is known about their neurobehavioral toxicity. This study aimed to investigate the potential mechanisms by which probiotics reduce CQDs neurotoxicity from a brain-gut axis perspective by exposing carp to CQDs and/or probiotics for five weeks. The results showed that CQDs accumulation in the brain reduces the expression of blood-brain-barrier (BBB) related genes in carp, leading to brain damage. In addition, CQDs impaired motor behavior and inhibited acetylcholinesterase activity. These abnormalities were alleviated by probiotic supplementation. Microbiomic analysis showed that probiotics improved the imbalance of intestinal flora caused by CQDs and increased the abundance of Firmicutes. Serum metabolomic analysis showed that probiotic supplementation restored the abnormal metabolic levels associated with neurological, inflammatory, and apoptotic cell death caused by CQDs. Overall, probiotic supplementation improved the CQDs-induced changes in brain damage, gut microbiology, and systemic metabolism. These results suggests that CQDs may cause neurotoxicity via the brain-gut microbial axis.


Asunto(s)
Carpas , Probióticos , Puntos Cuánticos , Contaminantes Químicos del Agua , Animales , Carbono , Acetilcolinesterasa , Contaminantes Químicos del Agua/toxicidad
4.
Int J Biol Macromol ; 225: 1072-1084, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36414078

RESUMEN

Aging is a process of progressive deterioration of multiple physiological functions within an organism. This study investigated the anti-aging effects of polysaccharides extracted from ginsenoside residues (GRP) in Caenorhabditis elegans using physiological, microbiomic, and transcriptomic approaches. GRP treatment prolonged the mean lifespan of C. elegans by 58.60 % (19.64 days) and did not affect locomotive behaviors. It reduced levels of lipofuscin and reactive oxygen species (ROS), and increased superoxide dismutase activity, which prevented oxidative damage caused by aging. Microbiomic data indicated that GRP administration significantly altered the composition of gut flora and increased the abundance of beneficial bacteria. Transcriptomic analyses identified 201 differentially expressed genes (DEGs). GRP treatment may enhance fatty acid degradation and induce preferential synthesis of beneficial fatty acids. It may also activate the metabolism of certain amino acids. The transcriptomic data were reliably reproduced using seven vital DEGs, which were confirmed by qRT-PCR analysis. These findings show that GRP has positive effects that prolong lifespan and alleviate aging in C. elegans. GRP should be explored as an effective dietary supplement for the development of functional foods. We propose a potentially novel mechanism that more fully describes the anti-aging mechanisms induced by GRP.


Asunto(s)
Proteínas de Caenorhabditis elegans , Panax , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Envejecimiento , Estrés Oxidativo , Longevidad , Especies Reactivas de Oxígeno/metabolismo , Polisacáridos/química , Panax/metabolismo
5.
J Control Release ; 348: 250-263, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35660631

RESUMEN

Hepatocellular carcinoma (HCC) is resistant to current immunotherapy. This poor outcome mainly results from the immunosuppressive characteristics of tumor microenvironment (TME). Accumulating evidence indicates that some chemotherapy agents trigger immunogenic cell death (ICD), providing a promising strategy to remodel the immunosuppressive TME. The role of Plumbagin (PLB, a naphthoquinone compound from Plumbago zeylanica L.) as the ICD inducer for HCC cells was confirmed in this study. Dihydrotanshinone I (DIH, a phenanthraquinone compound of Salvia miltiorrhiza) functioned as the ICD enhancer by generating the reactive oxygen species (ROS). A poly(D,L-lactic-co-glycolic acid) (PLGA)-based nanoparticle (NP) was used to co-encapsulate PLB, DIH and NH4HCO3 (a pH sensitive adjuvant). This NP was further coated with the mannose-inserted erythrocyte membrane to produce a nanoformulation. This nanoformulation significantly increased the half-life and tumor targeting of two drugs in orthotopic HCC mice, generating chemo-immunotherapeutic effects for reversal of immunosuppressive TME. Consequently, the biomimetic nanoformulation loaded with low doses of PLB and DIH achieved significantly longer survival of HCC mice, without causing toxic signs. Our study demonstrates a promising strategy for remodeling the immunosuppressive TME of liver cancer.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Naftoquinonas , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Furanos , Ácido Láctico/química , Neoplasias Hepáticas/metabolismo , Ratones , Nanopartículas/química , Naftoquinonas/química , Naftoquinonas/uso terapéutico , Fenantrenos , Quinonas , Microambiente Tumoral
6.
Huan Jing Ke Xue ; 43(6): 3241-3252, 2022 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-35686794

RESUMEN

To clarify the distribution characteristics and the ecological stoichiometric characteristics of nutrient elements in soils under different vegetation types, four typical natural wetlands, i.e., Phragmites australis wetland, Tamarix chinensis wetland, Suaeda salsa wetland, and Tidal flat wetland, as well as Gossypium spp. fields that were reclaimed from natural wetlands, were selected as study sites in the Yellow River Delta, and comparisons between the agricultural reclamation land and natural wetlands were conducted. The results showed that the soil total organic carbon (TOC) and total nitrogen (TN) contents in the natural wetlands were as follows:P. australis wetland and T. chinensis wetland>S. salsa wetland>Tidal flat, and the contents of TOC and TN were significantly negatively related to electrical conductivity (EC) and pH values (P<0.05). The contents of TOC, TN, and total phosphorus (TP) in Gossypium spp. fields were significantly higher than those in natural wetlands (P<0.05), especially the contents of nitrate nitrogen (NO3--N) in Gossypium spp. fields, which were 9.4-11.4 times that of natural wetlands. However, no significant correlations between TOC, TN, and TP and EC and pH values (P>0.05) were observed in Gossypium spp. fields. The results of correlation analysis showed that the C/N of natural wetlands were mainly controlled by the contents of TN (P<0.05), and the C/N of the Gossypium spp. fields were significantly lower than those of natural wetlands (P<0.05). The soil C/P and N/P of natural wetlands and Gossypium spp. fields in the Yellow River Delta were low, and the variation trends were consistent with those of soil TOC and TN. Comparative analysis revealed, on the whole, that there were significantly different soil nutrient element contents, C/N, C/P, and N/P in Gossypium spp. fields compared to those of natural wetlands (P<0.05). The process of reclamation could significantly change the spatial distribution of nutrient elements in wetlands. Our results should be of importance in revealing the biogeochemical process of soil nutrient elements in coastal wetland and the influence of agricultural reclamation activities on the differentiation of soil nutrient elements.


Asunto(s)
Suelo , Humedales , Carbono/análisis , China , Nitrógeno/análisis , Nutrientes/análisis , Fósforo/análisis , Ríos/química , Suelo/química
7.
Int J Pharm ; 606: 120888, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34271152

RESUMEN

Docetaxel (DTX) is a chemotherapeutic agent used for a range of cancers, but it has little activity against colorectal cancer (CRC). However, combination therapy with other therapeutic agents is a potential strategy to enhance the efficacy of DTX in CRC treatment. The nuclear factor-κB (NF-κB) signaling pathway is implicated in a variety of malignancies (e.g., CRC), and the blockade of NF-κB may increase the sensitivity of cancer cells to chemotherapy. The application of small interference RNA (siRNA) to inhibit the translation of complementary mRNA has demonstrated the potential for cancer gene therapy. In this study, an amphiphilic cationic cyclodextrin (CD) nanoparticle modified with PEGylated folate (FA; a ligand to target folate receptor on CRC) has been developed for co-delivery of DTX and siRNA (against the RelA, a subunit of NF-κB) in the treatment of CRC. The resultant co-formulation (CD.DTX.siRelA.PEG-FA) achieved cell-specific uptake indicating the function of the folate targeting ligand. The CD.DTX.siRelA.PEG-FA nanoparticle enhanced the apoptotic effect of DTX with the downregulation of RelA expression, which significantly retarded the growth of CRC in mice, without causing significant toxicity. These results suggest that the FA-targeted PEGylated CD-based co-formulation provides a promising strategy for combining DTX and siRNA in treating CRC.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Ciclodextrinas , Nanopartículas , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Docetaxel , Ácido Fólico , Ratones , Polietilenglicoles , ARN Interferente Pequeño
8.
Food Chem ; 337: 127767, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32799162

RESUMEN

Egg yolks are a good source of folates. However, the method for analyzing the naturally occurring folates in egg yolks is complicated and time-consuming. In this study, a simplified pre-treatment method followed by validated HPLC-MS/MS was developed to determine native folates in eggs from laying hens treated with different amounts of folic acid. The modified enhanced matrix removal -lipid method to purify samples showed good performance in lipid elimination, reduction of steps and time savings. According to experimental analysis, yolks contained total folate amounts ranging from 147 to 760 µg/100 g when laying hens' diet was supplemented with folic acid from 0 to 10 mg/kg. Four folate vitamers were detected in egg yolks: 5-methyltetrahydrofolate accounted for 91-98% of total folates, whereas folic acid, 5-formyltetrahydrofolate and 10-formylfolic acid together accounted for 2-9%. Therefore, laying hens efficiently converted folic acid in feed into 5-methyltetrahydrofolate in eggs with little folic acid deposition.


Asunto(s)
Cromatografía Líquida de Alta Presión , Yema de Huevo/química , Ácido Fólico/análisis , Lípidos/química , Espectrometría de Masas en Tándem , Animales , Pollos , Suplementos Dietéticos , Femenino , Ácido Fólico/aislamiento & purificación , Extracción en Fase Sólida , Tetrahidrofolatos/análisis
9.
Food Chem ; 337: 127992, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32920270

RESUMEN

Mechanical wounding causes significant economic losses of fresh produce due to accelerated senescence and spoilage as well as loss of nutritional value. Here, pre-application of oligogalacturonides (OGs) enzymatically hydrolyzed from apple pectin effectively reduced the healing times of mechanical wounds from>24 h in mock groups to 12 h, and the Botrytis cinerea infection rate was reduced from 37.5% to 12.5%. OGs accordingly increased callose deposition; SlPR1, SlPAL and SlHCT gene expression; and phenylalanine ammonia-lyase (PAL) activity around the wounds. Inhibition of Ca2+ signaling using the inhibitor Ruthenium Red markedly inhibited OG accelerated healing of mechanical wounding on fruit. SlPG2, SlEXP1, and SlCEL2 mRNAs accumulation was reduced in OG-elicited tomato fruit compared to water-treated fruit with subsequent retardation of the fruit softening during ripening. These results indicated that apple pectin OGs accelerate wound healing and inhibit fruit softening by activating calcium signaling in tomato fruits during postharvest storage.


Asunto(s)
Oligosacáridos/farmacología , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/fisiología , Botrytis/patogenicidad , Calcio/metabolismo , Frutas/efectos de los fármacos , Frutas/metabolismo , Frutas/microbiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucanos/metabolismo , Hidrólisis , Solanum lycopersicum/microbiología , Malus/química , Oligosacáridos/química , Pectinas/química , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
J Med Chem ; 63(21): 12748-12772, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-32991173

RESUMEN

Farnesoid X receptor (FXR) plays a key role in bile acid homeostasis, inflammation, fibrosis, and metabolism of lipid and glucose and becomes a promising therapeutic target for nonalcoholic steatohepatitis (NASH) or other FXR-dependent diseases. The phase III trial results of obeticholic acid demonstrate that the FXR agonists emerge as a promising intervention in patients with NASH and fibrosis, but this bile acid-derived FXR agonist brings severe pruritus and an elevated risk of cardiovascular disease for patients. Herein, we reported our efforts in the discovery of a series of non-bile acid FXR agonists, and 36 compounds were designed and synthesized based on the structure-based drug design and structural optimization strategies. Particularly, compound 42 is a highly potent and selective FXR agonist, along with good pharmacokinetic profiles, high liver distribution, and preferable in vivo efficacy, indicating that it is a potential candidate for the treatment of NASH or other FXR-dependent diseases.


Asunto(s)
Ácido Quenodesoxicólico/análogos & derivados , Receptores Citoplasmáticos y Nucleares/agonistas , Animales , Sitios de Unión , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Ácido Quenodesoxicólico/química , Ácido Quenodesoxicólico/metabolismo , Ácido Quenodesoxicólico/farmacocinética , Ácido Quenodesoxicólico/uso terapéutico , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Semivida , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Ratas , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares/metabolismo , Relación Estructura-Actividad
11.
Artículo en Inglés | MEDLINE | ID: mdl-32802128

RESUMEN

Schisandra chinensis (SC) is reported to improve myocardial ischemia. Velocity vector imaging (VVI) is a noninvasive technique for evaluating myocardial function in humans, while few reported on the application in animals. In this study, we aimed to evaluate the improved effects of SC on the myocardium of Sprague Dawley rats having hyperthyroid heart disease (HHD) using VVI technique. HHD models were established by injecting daily with subcutaneous levothyroxine (0.5 mg/kg). Then, the SC group was administered the aqueous extract of SC (2 g/kg) once daily, while the HHD and control (CON) groups were administered the same amount of distilled water daily. All the rats were provided the same amount of food and water daily, and the intervention was stopped after 28 days. The efficacy of SC in HHD rats was evaluated by ultrasound VVI. The serum total triiodothyronine level, total thyroxine level, N-terminal pro-brain natriuretic peptide expression, p53 expression, and calmodulin (CaM) activity were assessed by western blotting, Hematoxylin-Eosin and Masson staining, and electron microscopy. The results indicated that SC significantly improved the systolic velocity, diastolic velocity, strain, systolic strain rate, and diastolic strain rate of the heart by significantly reducing p53 expression and CaM activity (P < 0.05), improving myocardial fibrosis in HHD rats. Also, VVI can be a valuable tool for the evaluation of myocardial function in HHD rats.

12.
Mol Cancer Ther ; 19(7): 1550-1561, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32393472

RESUMEN

Glioma is one of the most common primary malignant tumors of the central nervous system accounting for approximately 40% of all intracranial tumors. Temozolomide is a conventional chemotherapy drug for adjuvant treatment of patients with high-risk gliomas, including grade II to grade IV. Our bioinformatic analysis of The Cancer Genome Atlas and Chinese Glioma Genome Atlas datasets and immunoblotting assay show that SLC12A2 gene and its encoded Na+-K+-2Cl- cotransporter isoform 1 (NKCC1) protein are abundantly expressed in grade II-IV gliomas. NKCC1 regulates cell volume and intracellular Cl- concentration, which promotes glioma cell migration, resistance to temozolomide, and tumor-related epilepsy in experimental glioma models. Using mouse syngeneic glioma models with intracranial transplantation of two different glioma cell lines (GL26 and SB28), we show that NKCC1 protein in glioma tumor cells as well as in tumor-associated reactive astrocytes was significantly upregulated in response to temozolomide monotherapy. Combination therapy of temozolomide with the potent NKCC1 inhibitor bumetanide reduced tumor proliferation, potentiated the cytotoxic effects of temozolomide, decreased tumor-associated reactive astrogliosis, and restored astrocytic GLT-1 and GLAST glutamate transporter expression. The combinatorial therapy also led to suppressed tumor growth and prolonged survival of mice bearing GL26 glioma cells. Taken together, these results demonstrate that NKCC1 protein plays multifaceted roles in the pathogenesis of glioma tumors and presents as a therapeutic target for reducing temozolomide-mediated resistance and tumor-associated astrogliosis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/patología , Gliosis/prevención & control , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Temozolomida/farmacología , Animales , Antineoplásicos Alquilantes , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Tamaño de la Célula , Femenino , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Gliosis/genética , Gliosis/metabolismo , Gliosis/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Pronóstico , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Nutr ; 150(4): 704-711, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32060554

RESUMEN

BACKGROUND: The association between high selenium (Se) intake and metabolic disorders such as type 2 diabetes has raised great concern, but the underlying mechanism remains unclear. OBJECTIVE: Through targeted metabolomics analysis, we examined the liver sugar and acylcarnitine metabolism responses to supranutritional selenomethionine (SeMet) supplementation in pigs. METHODS: Thirty-six castrated male pigs (Duroc-Landrace-Yorkshire, 62.0 ± 3.3 kg) were fed SeMet adequate (Se-A, 0.25 mg Se/kg) or SeMet supranutritional (Se-S, 2.5 mg Se/kg) diets for 60 d. The Se concentration, biochemical, gene expression, enzyme activity, and energy-targeted metabolite profiles were analyzed. RESULTS: The Se-S group had greater fasting serum concentrations of glucose (1.9-fold), insulin (1.4-fold), and free fatty acids (FFAs,1.3-fold) relative to the Se-A group (P < 0.05). The liver total Se concentration was 4.2-fold that of the Se-A group in the Se-S group (P < 0.05), but expression of most selenoprotein genes and selenoenzyme activity did not differ between the 2 groups. Seven of 27 targeted sugar metabolites and 4 of 21 acylcarnitine metabolites significantly changed in response to high SeMet (P < 0.05). High SeMet supplementation significantly upregulated phosphoenolpyruvate carboxy kinase (PEPCK) activity by 64.4% and decreased hexokinase and succinate dehydrogenase (SDH) activity by 46.5-56.7% (P < 0.05). The relative contents of glucose, dihydroxyacetone phosphate, α-ketoglutarate, fumarate, malate, erythrose-4-phosphate, and sedoheptulose-7-phosphate in the Se-S group were 21.1-360% greater than those in the Se-A group (P < 0.05). The expression of fatty acid synthase (FASN) and the relative contents of carnitine, hexanoyl-carnitine, decanoyl-carnitine, and tetradecanoyl-carnitine in the Se-S group were 35-97% higher than those in the Se-A group (P < 0.05). CONCLUSIONS: Dietary high SeMet-induced hyperglycemia and hyperinsulinemia were associated with suppression of sugar metabolism and elevation of lipid synthesis in pig livers. Our research provides novel insights into high SeMet intake-induced type 2 diabetes.


Asunto(s)
Carnitina/análogos & derivados , Dieta , Hígado/metabolismo , Selenometionina/administración & dosificación , Azúcares/metabolismo , Animales , Carnitina/metabolismo , Diabetes Mellitus Tipo 2/inducido químicamente , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Homeostasis/efectos de los fármacos , Hiperglucemia/inducido químicamente , Hiperinsulinismo/inducido químicamente , Lípidos/biosíntesis , Hígado/química , Hígado/enzimología , Masculino , Metabolómica/métodos , Modelos Animales , Oxidación-Reducción , ARN Mensajero/análisis , Selenio/administración & dosificación , Selenio/efectos adversos , Selenio/análisis , Selenometionina/efectos adversos , Selenoproteínas/genética , Sus scrofa
14.
Zhongguo Zhong Yao Za Zhi ; 42(4): 739-745, 2017 Feb.
Artículo en Chino | MEDLINE | ID: mdl-28959846

RESUMEN

This study aimed to analyze the analgesic effect and related central mechanisms of CQ prescription on cancer invasion induced mirror image pain (CIIMIP)in model mice.In the study, male BALB/c mice were randomly divided into normal group, operation control group (injected with 0.2 mL inactivated S180 sarcoma cell sap), model group (injected with 0.2 mL S180 sarcoma cell sap on the right leg near the greater trochanter of femur) and CQ prescription low dose group (intraperitoneally injected with CQ prescription 100 mg•kg⁻¹ on the basis of model mice), CQ prescription middle dose group (intraperitoneally injected with CQ prescription 150 mg•kg⁻¹ on the basis of model mice), and CQ prescription high dose group (intraperitoneally injected with CQ prescription 200 mg•kg⁻¹ on the basis of model mice). Mechanical withdraw threshold (MWT) of the mirror image lateral hind paws were evaluated by Von Frey hairs before modeling and after surgery. The levels of glutamate (Glu), gamma aminobutyric acid (GABA), glycine (Gly), and taurine (Tau) in the L3-L5 spinal cord were measured by the high performance liquid chromatography-fluorescence detector (HPLC-FLD); AimPlex detection technology with multiple factors was used to detect the levels of regulated on activation in normal T-cell expressed and secreted (RANTES), monocyte chemoattractant protein (MCP-3) in the L3-L5 spinal cord. Then we observed the influence of GABAa receptor antagonist (Bicuculline) on analgesic effect of CQ prescription.The results indicated that CQ prescription could remarkably increase MWT of model mice(P<0.01, P<0.05), decrease the level of Glu(P<0.01, P<0.05), improve the levels of GABA, Gly, Tau(P<0.01, P<0.05), lower the ratio of Glu/GABA(P<0.01, P<0.05), and reduce the levels of RANTES, MCP-3(P<0.05) in the L3-L5 spinal cord, and GABAa receptor antagonist significantly blocked the analgesic effect of CQ prescription at two time points(P<0.05).This study showed that CQ prescription had significant analgesic effect on CIIMIP model mice, and its mechanism was associated with regulating the balance between excitability amino acid(EAA) and inhibitory amino acid (IAA) transmitters in central nervous system, partially activating GABAa receptor, and reducing the release of RANTES and MCP-3 in the spinal cord.


Asunto(s)
Analgésicos/farmacología , Medicamentos Herbarios Chinos/farmacología , Neoplasias Experimentales/complicaciones , Dolor/tratamiento farmacológico , Animales , Ácido Glutámico/análisis , Glicina/análisis , Masculino , Ratones , Ratones Endogámicos BALB C , Invasividad Neoplásica , Médula Espinal/química , Taurina/análisis , Ácido gamma-Aminobutírico/análisis
15.
Colloids Surf B Biointerfaces ; 159: 419-426, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28823972

RESUMEN

In this study, we prepared mixed micelles composed of a pH-sensitive poly(ethylene glycol)-doxorubicin conjugate prodrug and d-alpha-tocopheryl polyethylene glycol succinate (TPGS). The average hydrodynamic size of the mixed micelles was approximately 144nm, measured by dynamic light scattering. In an MTT assay the pH-sensitive prodrug was non-cytotoxic at low concentration but inhibited drug-resistant cancer cell (MCF-7/ADR) growth at high dose. The mixed micelles showed concentration-dependent cytotoxicity and significantly increased the cytotoxicity of the prodrug in MCF-7/ADR cells. Confocal laser scanning images revealed that higher concentrations of doxorubicin were successfully delivered into cell nuclei, enabling effective drug-induced cell death. Fluorescence microscopy indicated that there was less escape of the internalized doxorubicin from cells. Therefore, the enhanced drug efficacy in MCF-7/ADR cells is most likely attributed to a synergistic effect of drug-release from the pH-sensitive prodrug inside cells and suppression of P-glycoprotein efflux activity by TPGS.


Asunto(s)
Micelas , Polietilenglicoles/química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Concentración de Iones de Hidrógeno , Células MCF-7 , Vitamina E/química , Vitamina E/farmacología
16.
Phytother Res ; 31(3): 459-465, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28093813

RESUMEN

Acute kidney injury (AKI) is a critical care syndrome, resulting in acute reduction of renal function and up to 22% mortality of hospitalized patients. Nerolidol is a major component in several essential oils that possesses various pharmacological properties. The present study aimed to investigate the potential effect of nerolidol on lipopolysaccharide (LPS)-induced AKI. Nerolidol dose-dependently reduced the pathological injuries of kidney induced by LPS in rats. Nerolidol significantly decreased the levels of blood urea nitrogen and creatinine in LPS-treated rats in a dose-dependent manner. In addition, nerolidol inhibited LPS-induced decrease of cell viability in NRK-52E rat proximal tubular cells, which effect was concentration dependent. Nerolidol notably inhibited the increase of TNFα and IL-1ß in LPS-treated rats and the mRNA expression of TNFα and IL-1ß in LPS-treated NRK-52E cells. Nerolidol suppressed the increase of toll-like receptor 4 (TLR4) expression, phosphorylation and nuclear translocation of p65 NF-κB in kidneys of LPS-treated rats and LPS-treated NRK-52E cells. Overexpression of TLR4 and p65 NF-κB significantly suppressed nerolidol-induced inhibition of TNFα and IL-1ß expression and increase of cell viability in LPS-treated cells. In summary, we found that nerolidol played a critical anti-inflammatory effects through inhibition of TLR4/NF-κB signaling and protected against LPS-induced AKI. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Lesión Renal Aguda/prevención & control , Citoprotección/efectos de los fármacos , Riñón/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Sesquiterpenos/farmacología , Receptor Toll-Like 4/antagonistas & inhibidores , Lesión Renal Aguda/inducido químicamente , Animales , Células Cultivadas , Creatinina/sangre , Interleucina-1beta/metabolismo , Riñón/metabolismo , Lipopolisacáridos/efectos adversos , Lipopolisacáridos/farmacología , Masculino , Ratones , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
17.
Chin J Nat Med ; 14(5): 363-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27478099

RESUMEN

The present study was designed to establish a suitable assay to explore CCR2b receptor antagonists from the natural products of Artemisia rupetris and Leontopodium leontopodioides. An aequorin assay was developed as a cell-based assay suitable for 384-well microplate and used for screening CCR2b receptor antagonists from natural products. Through establishing suitable conditions, the assay was shown to be suitable for screening of CCR2b receptor antagonists. Seven compounds were identified in preliminary screening. Five of them showed evident dose-response relationship in secondary screening. The structure-activity relationship study suggested that 7-position hydroxyl group of flavonoids was necessary, a polar group should be introduced on the 3-position, and the substituents on 2-position benzene ring of flavonoids have little influence on the potentency of the inhibition activity on CCR2b receptor. The ortho-position dihydroxyl structure in quinic acid compounds may be important. In conclusion, Compounds HR-1, 5, 7, and AR-20, 35 showed activity as antagonist of CCR2b receptor, which shed lights on the development of novel drugs as CCR2b receptor antagonists for preventing inflammation related diseases.


Asunto(s)
Artemisia/química , Asteraceae/química , Extractos Vegetales/farmacología , Receptores CCR2/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , Humanos , Cinética , Extractos Vegetales/química , Receptores CCR2/genética , Receptores CCR2/metabolismo , Relación Estructura-Actividad
18.
Rapid Commun Mass Spectrom ; 29(3): 283-94, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26411626

RESUMEN

RATIONALE: Neopanaxadiol (NPD) is one of the major ginsenosides in Panax ginseng C. A. Meyer (Araliaceae) that has been suggested to be a drug candidate against Alzheimer's disease. However, few data are available regarding its metabolism in rats. METHODS: In this study, a method of ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/QTOFMS) was developed to identify major metabolites of NPD in the stomach, intestine, urine and feces of rats, with the aim of determining the main metabolic pathways of NPD in rats after oral administration. RESULTS: UPLC/QTOFMS revealed two metabolites in the stomach of rats, one metabolite in the intestine and two metabolites in feces. One metabolite, named M2, was isolated and purified from rats feces, which was identified as (20S,22S)-dammar-22,25-epoxy-3ß,12ß,20-triol based on extensive NMR spectroscopy and mass spectrometry data. The main metabolites of NPD in rats were the products of epoxidation, dehydrogenation and hydroxylation. NPD was predominantly metabolized by 20,22-double-bond epoxidation and rearrangement to yield an expoxidation product (M2). CONCLUSIONS: Based on the profiles of the metabolites, possible metabolic pathways of NPD in rats were proposed for the first time. This study provides new and available information on the metabolism of NPD, which is indispensable for further research on metabolic pathways of dammarane ginsengenins in vivo.


Asunto(s)
Ginsenósidos/análisis , Ginsenósidos/metabolismo , Animales , Cromatografía Líquida de Alta Presión/métodos , Heces/química , Mucosa Gástrica/metabolismo , Ginsenósidos/orina , Mucosa Intestinal/metabolismo , Intestinos/química , Panax/química , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem/métodos
19.
Zhongguo Zhong Yao Za Zhi ; 39(3): 488-92, 2014 Feb.
Artículo en Chino | MEDLINE | ID: mdl-24946553

RESUMEN

OBJECTIVE: To observe the effect of synchronous perfusion of specific respiratory chain complex IV inhibitor sodium azide (NaN3) in brain on rat ventromedial prefrontal cortex (mPFC) and acetylcholine (ACh) and choline (Ch) contents in hippocampal extra-cellular fluid, and establish the AD rat model induced by mitochondrial acute injury. METHOD: The synchronous dual-probe dual-channel brain microdialysis sampling technology was applied to synchronously perfuse modified Ringer's solution containing NaN3 (50 micro mol L-1) and neostigmine (2 micro mol L-1) into mPFC and hippocampus of conscious, freely moving normal rats, and continuously collect dialysates from different encephalic areas. Dynamic contents of ACh and Ch were determined by high performance liquid chromatography-post-column immobilized enzyme reactor-electrochemical process. RESULT: ACh and Ch contents in mPFC extracellular fluid of normal rats were higher than that in hippocampus. During the process of perfusion, NaN3 could significantly reduce ACh in mPFC/hippocampal extra-cellular fluid, but remarkably increase Ch, and constantly inhibit the recovery of ACh and Ch contents in mPFC/hippocampus. CONCLUSION: The synchronous perfusion of NaN3in rat mPFC and hippocampus can injure functions of the cholinergic nerve projection area, and cause the acute AD model with ACh and Ch metabolic disorders. This model can be used in pathogenetic and pharmacological studies.


Asunto(s)
Líquido Extracelular/efectos de los fármacos , Líquido Extracelular/metabolismo , Hipocampo/citología , Neurotransmisores/metabolismo , Perfusión , Corteza Prefrontal/citología , Azida Sódica/farmacología , Acetilcolina/metabolismo , Animales , Colina/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Azida Sódica/administración & dosificación , Factores de Tiempo
20.
J Neurosci ; 34(10): 3743-55, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24599472

RESUMEN

In this study, we investigated the development of endoplasmic reticulum (ER) stress after traumatic brain injury (TBI) and the efficacy of post-TBI administration of docosahexaenoic acid (DHA) in reducing ER stress. TBI was induced by cortical contusion injury in Sprague-Dawley rats. Either DHA (16 mg/kg in DMSO) or vehicle DMSO (1 ml/kg) was administered intraperitoneally at 5 min after TBI, followed by a daily dose for 3-21 d. TBI triggered sustained expression of the ER stress marker proteins including phosphorylated eukaryotic initiation factor-2α, activating transcription factor 4, inositol requiring kinase 1, and C/EBP homologous protein in the ipsilateral cortex at 3-21 d after TBI. The prolonged ER stress was accompanied with an accumulation of abnormal ubiquitin aggregates and increased expression of amyloid precursor protein (APP) and phosphorylated tau (p-Tau) in the frontal cortex after TBI. The ER stress marker proteins were colocalized with APP accumulation in the soma. Interestingly, administration of DHA attenuated all ER stress marker proteins and reduced the accumulation of both ubiquitinated proteins and APP/p-Tau proteins. In addition, the DHA-treated animals exhibited early recovery of their sensorimotor function after TBI. In summary, our study demonstrated that TBI induces a prolonged ER stress, which is positively correlated with abnormal APP accumulation. The sustained ER stress may play a role in chronic neuronal damage after TBI. Our findings illustrate that post-TBI administration of DHA has therapeutic potentials in reducing ER stress, abnormal protein accumulation, and neurological deficits.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Lesiones Encefálicas/metabolismo , Ácidos Docosahexaenoicos/uso terapéutico , Estrés del Retículo Endoplásmico/fisiología , Neuronas/metabolismo , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/antagonistas & inhibidores , Animales , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/patología , Ácidos Docosahexaenoicos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Masculino , Neuronas/efectos de los fármacos , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Proteínas tau/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA