Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 46(21): 5719-5726, 2021 Nov.
Artículo en Chino | MEDLINE | ID: mdl-34951226

RESUMEN

The aim of this paper was to explore the effect and mechanism of Jiawei Baitouweng Decoction(JWBTW) against ulcerative colitis(UC) from the perspective of intestinal mucosal tight junction proteins. From 60 SPF-grade male SD rats, 10 were randomly selected as the blank control, and the remaining 50 were treated with 3% dextran sodium sulfate(DSS) solution to induce UC and then randomized into the model group, mesalazine group, and low-, medium-, and high-dose JWBTW( L-JWBTW, M-JWBTW and H-JWBTW) groups, with 10 rats in each group. After successive medication for 14 days, the rat general conditions like body weight and stool were observed and the disease activity index(DAI) was calculated. The pathological changes in colon tissue was observed under a microscope for injury severity scoring and histopathological scoring. The serum endotoxin content was determined by limulus assay, followed by the measurement of protein expression levels of ZO-1, occludin, claudin-1, p38 MAPK, MLCK, MLC2 and p-MLC in colon tissue by Western blot. The results showed that compared with the blank group, the model group exhibited significantly reduced body weight, elevated DAI, injury severity and histopathological scores and serum endotoxin content, up-regulated protein expression levels of p38 MAPK, MLCK, MLC2 and p-MLC, and down-regulated ZO-1, occludin and claudin-1. Compared with the model group,mesalazine and JWBTW at each dose obviously increased the body weight, lowered the DAI, injury severity and histopathological scores and serum endotoxin content, down-regulated the protein expression levels of p38 MAPK, MLCK, MLC2 and p-MLC, and up-regulated the ZO-1, occludin and claudin-1, with the most obvious changes noticed in the H-JWBTW group. All these have indicated that JWBTW exerts the therapeutic effect against UC by inhibiting the activation of p38 MAPK/MLCK pathway, reversing the protein expression levels of occludin, claudin-1 and ZO-1, decreasing the serum endotoxin content, promoting the repair of intestinal mucosal mechanical barrier, maintaining the integrity of tight junctions, and reducing the permeability of intestinal mucosa.


Asunto(s)
Colitis Ulcerosa , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Modelos Animales de Enfermedad , Mucosa Intestinal , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Proteínas de Uniones Estrechas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-32831864

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is a chronic recurrent inflammation of the colon, and clinical outcome of UC is still unsatisfied. Pingkui enema, a traditional Chinese medicine prescription, has been safely applied for the treatment of diarrhea and dysentery in clinic for many years. However, its mechanism is still elusive. The present study is designed to investigate the effect of Pingkui enema on trinitrobenzene sulfonic acid- (TNBS-) induced ulcerative colitis (UC) and possible mechanism in rats. METHODS: UC was induced by intracolonic instillation of TNBS in male Sprague-Dawley rats, which were treated with different dosages of Pingkui enema (low, medium, and high) or sulfasalazine for ten days. Survival rate was calculated. A clinical disease activity score was evaluated. Histological colitis severity was analyzed by hematoxylin-eosin (HE) staining. Content of Bifidobacterium in intestinal tissue was analyzed by RT-PCR. Concentration of IL-8, IL-13, TNF-α, D-lactic acid (D-LA), and diamine oxidase (DAO) in serum and contents of adhesin and receptor of Bifidobacterium adhesion in rat intestinal mucus were measured by ELISA. RESULTS: The results showed that Pingkui enema treatment with high dosage markedly improved the survival rate compared with untreated and sulfasalazine treated groups. All dosages of Pingkui enema reduced pathological score. High dosage of Pingkui enema and sulfasalazine treatments significantly reduced the serum concentration of IL-8, TNF-α, D-LA, and DAO and markedly increased the serum concentration of IL-13. In addition, high-dose Pingkui enema and sulfasalazine treatments increased gut content of Bifidobacterium, gut mucus expressions of adhesin, and adhesin receptor of Bifidobacterium. CONCLUSIONS: Pingkui enema has therapeutic effect on TNBS-induced UC, and possible mechanism may be via regulation of gut probiotics (Bifidobacterium) and inflammatory factors and protection of intestinal mucosal barrier.

3.
Huan Jing Ke Xue ; 31(6): 1575-80, 2010 Jun.
Artículo en Chino | MEDLINE | ID: mdl-20698275

RESUMEN

Main constituents (lignin, cellulose and hemicelullose) were extracted from rice straw, and characterized by elemental analysis and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT). Sorption of pyrene on rice straw and its main constituents was studied. The results showed that there are great differences in the properties of the three constituents, with lignin of higher aromaticity and lower polarity, while cellulose and hemicellulose of greater polarity and aliphaticity. Sorption of pyrene also differed a lot due to the varied characteristics of the sorbents. All isotherms were fitted well with Freundlich equation. Lignin showed the greatest sorption capacity for pyrene, with K(F) being 5.04 x 10(4), approximately 100 times greater than that of cellulose. Sorption of pyrene on hemicellulose was even a little smaller than that on cellulose. At low solute aqueous concentration (c(e) = 0.01 S(w)), the sorption of pyrene on rice straw was controlled by lignin, and sorption coefficient (K(d)) was a little smaller than that predicted by the K(d) value on lignin and its mass fraction. This suggested that some sorption sites such as alkyl and aromatic centers were covered when the lignin existed mixed in the rice straw. But at high concentration (c(e) = 0.5 S(w)), the K(d) value of pyrene on rice straw was markedly greater than the sum of those on three constituents, suggesting that partition on other constituents could not be neglected. Moreover, pyrene sorption isotherm on lignin was nonlinear (Freundlich exponent, n = 0.89), while sorption on the other three sorbents was more linear (n > 0.96). A negative relationship between n and aromaticity was observed, which illustrates that specific effect related with aromaticity is the main reason for nonlinearity. Organic carbon normalized sorption coefficients (K(oc)) increased with increasing aromaticity and decreased with increasing polarity of the sorbents.


Asunto(s)
Oryza/química , Extractos Vegetales/química , Pirenos/aislamiento & purificación , Contaminantes del Suelo/aislamiento & purificación , Adsorción , Celulosa/química , Celulosa/aislamiento & purificación , Lignina/química , Lignina/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Tallos de la Planta/química , Espectroscopía Infrarroja por Transformada de Fourier
4.
J Environ Manage ; 88(3): 556-63, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17517464

RESUMEN

Interactions of hydrophobic organic compounds (HOCs) with soil organic matter (SOM) determine their combination state in soils, and therefore strongly influence their mobility, bioavailability, and chemical reactivity. Contact time (aging) of an HOC in soil also strongly influences its combination state and environmental fate. We studied Fenton oxidation of pyrene in three different soils to reveal the influences of SOM, contact time, and combination state on the efficiency of vigorous chemical reactions. Pyrene degradation efficiency depended strongly on the dose of oxidant (H(2)O(2)) and catalyst (Fe(2+)); the greatest degradation was achieved at an oxidant to catalyst molar ratio of 10:1. Pyrene degradation differed among the three soils, ranging from 65.4% to 88.9%. Pyrene degradation efficiency decreased with increasing SOM content, and the aromatic carbon content in SOM was the key parameter. We hypothesize that pyrene molecules that combine with the compact net structure of aromatic SOM are less accessible to Fenton oxidation. Furthermore, pyrene degradation efficiency decreased considerably after aged for 30 days, but further aging to 60 and 180 days did not significantly change degradation efficiency. The Fenton oxidation efficiency of pyrene in both unaged and aged soils was greater than the corresponding desorption rate during the same period, perhaps because Fenton reaction can make pyrene more accessible to the oxidant through the enhancement of HOCs' desorption by generating reductant species or by destroying SOM through oxidation.


Asunto(s)
Pirenos/química , Contaminantes del Suelo/química , Suelo , Compuestos Ferrosos/química , Peróxido de Hidrógeno/química , Compuestos Orgánicos/química , Oxidación-Reducción , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA