Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 263(Pt 1): 130349, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387634

RESUMEN

With the extensive application of baicalein in the treatment of cardiovascular and cerebrovascular diseases, its clinical and market demand has gradually expanded. But the natural yield of baicalein is very low, and it is mainly prepared by the deglycosylation of baicalin. However, the insolubility of baicalin in water significantly limits the deglycosylation of it under biocatalysis. To make biocatalysis of baicalin more efficient and environmental, a strategy was designed to enhance its water solubility through the solubilization mechanism of endogenous biological macromolecules, and the effect on the activity of glucuronidase was further explored. The results showed that wrapping with Scutellaria baicalensis polysaccharide (SBP) significantly improved the solubility of baicalin in water (the water solubility of baicalin increased by 23 times, BI/SBP = 1/12, w/w). It was not only contributed to the efficient production of baicalein by one-pot method, but also effectively improved the deglycosylation rate of baicalin (increase by 47.04 % in aqueous solution). With the help of the solubilization of endogenous polysaccharide on baicalin in aqueous solution, a green, low-cost and efficient method (one-pot method) was designed to simultaneously extract and enzymatic hydrolyze baicalin to prepare baicalein. Under the same conditions, the yield of one-pot method is 87.17 %, which was much higher than that of the conventional method (29.38 %). In addition, one-pot method with the aid of endogenous polysaccharide could simply and conveniently prepare aglycone of other insoluble natural flavonoids, which has a wide range of industrial application value.


Asunto(s)
Flavanonas , Scutellaria baicalensis , Flavonoides , Extractos Vegetales , Agua
2.
RSC Adv ; 12(38): 25025-25034, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36199877

RESUMEN

In this study, deep eutectic solvents coupled with a pulsed electric field (PEF-DES) were first applied to the extraction of traditional Chinese medicine plants. This study uses the PEF-DES extraction technique to extract TG-KF (Kapok flavonoid solution extracted with DES-TG). PEF-DES is a simple, effective and environmentally-friendly technology and can be used in industrial-scale production. For the optimal extraction conditions of TG-KF, DES-TG was used as a solvent, the DES-TG concentration was 50%, the solid-liquid ratio was 1 : 30, the electric field intensity was 0.55 kV cm-1, the number of pulses was 100, and the yield of flavonoids was 14.36 ± 0.35%. TG-KF has very good stability and there is no precipitation or discoloration within 6 months. The results of chicken embryo experiments and human patch tests show that 10% TG-KF aqueous solution has no irritation. DPPH experiments show that TG-KF has excellent efficacy as an antioxidant. Overall, TG-KF is expected to become a potential antioxidant raw material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA