Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1228356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645462

RESUMEN

Salvia plebeia (Lamiaceae) is a valuable medicinal plant widely distributed across Asia and Oceania. However, the composition and accumulation patterns of its active ingredients in different organs during the growth and their biosynthetic mechanism remain unknown. Therefore, we conducted metabolite profiling, transcriptomic analysis, and biological functional verification to explore the distribution, accumulation, and biosynthesis mechanisms of flavonoids in S. plebeia. We identified 70 metabolites including 46 flavonoids, 16 phenolic acids, seven terpenoids, and one organic acid, of which 21 were previously unreported in S. plebeia. Combining metabolomic-transcriptomic analysis and biological functional verification, we identified the key genes involved in biosynthesis of its main active ingredients, hispidulin and homoplantaginin, including SpPAL, SpC4H, Sp4CL2, Sp4CL5, SpCHS1, SpCHI, SpFNS, SpF6H1, SpF6OMT1, SpF6OMT2, SpUGT1, SpUGT2, and SpUGT3. Using the identified genes, we reconstructed the hispidulin and homoplantaginin biosynthesis pathways in Escherichia coli, and obtained a yield of 5.33 and 3.86 mg/L for hispidulin and homoplantaginin, respectively. Our findings provide valuable insights into the changes in chemical components in different organs of S. plebeia during different growth and harvest stages and establishes a foundation for identifying and synthesizing its active components.

2.
Pestic Biochem Physiol ; 194: 105465, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532342

RESUMEN

Isoxadifen-ethyl (IDF) and cyprosulfamide (CSA) can effectively protect maize from nicosulfuron (NIC) injury, while mefenpyr-diethyl (MPR) and fenchlorazole-ethyl (FCO) did not. Their chemical diversity and requirement to use them in combination with the corresponding herbicides suggest that their elicitation of gene expression are complex and whether it is associated with the safening activity remains elusive. In this study, our first objective was to determine whether or not the ability of four safeners to enhance the metabolic rate of nicosulfuron. It was found that nicosulfuron degradation in maize was accelerated by IDF and CSA, but not by FCO and MPR. Transcriptomic analysis showed that the number of genes induced by IDF and CSA were larger than that induced by FCO and MPR. Overall, 34 genes associated with detoxification were identified, including glutathione S-transferase (GST), cytochrome P450 (CYP450), UDP-glucosyltransferase (UGT), transporter and serine. Moreover, 14 detoxification genes were screened for further verification by real-time PCR in two maize inbred lines. Two maize inbred lines exhibited high expression levels of four genes (GST31, GST39, AGXT2 and ADH) after IDF treatment. GST6, GST19, MATE, SCPL18 and UF3GT were specifically up-regulated in telerant maize inbred line under IDF and IDF + NIC treatments. Seven genes, namely GST31, GST6, GST19, UF3GT, MATE, ADH and SCPL18, are induced by IDF and CSA to play a vital role in regulating the detoxification process of NIC. Accordingly, the GST activity in maize was accelerated by IDF and CSA, but not by FCO and MPR. This result is consistent with transcriptome and metabolic data.These results indicate that the mitigation of NIC damage is associated with enhanced herbicide metabolism. IDF and CSA were more effective in protecting maize from NIC injury due to their ability to enhance the detoxification of specific types of herbicides, compared to FCO and MPR. The chemical specificity of four safeners is attributed to the up-regulated genes related to the detoxification pathway.


Asunto(s)
Herbicidas , Zea mays , Transcriptoma , Piridinas/farmacología , Herbicidas/toxicidad , Herbicidas/metabolismo
3.
Fitoterapia ; 155: 105053, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34610355

RESUMEN

It is commonly known that radiotherapy is still a key modality for treatment of cancer. Though this effect is desirable during radiotherapy, it leads to radiotoxicity on normal healthy cells. In the present research, we designed, synthesized and analyzed a series of nitronyl nitroxide radical (NITR) spin-labeled resveratrol (RES) derivatives. The cytotoxicity of the newly synthesized substances was tested on Jurkat T cells. The derivatives were studied as reactive oxygen species (ROS) scavenger to protect ionizing radiation of Jurkat T cells upon 6 Gy X-irradiation. The experimental results revealed that compound 2 and 3 could significantly alleviate the damage of Jurkat T cells, as evidenced by decreasing ROS production and restoring the cell apoptosis. Further mechanism investigations indicated that the radioprotective effects of the novel derivatives were largely associated with modulating the expression of apoptotic proteins including cIAP-1, cIAP-2, cytochrome c, caspase-3 and caspase-9. Based on the experimental result, we disclosed that the novel NITR spin-labeled RES derivatives exhibit the potential to be used as the novel radioprotective candidates to ameliorate the injury induced by ionizing radiation.


Asunto(s)
Apoptosis/efectos de los fármacos , Óxidos de Nitrógeno/farmacología , Protectores contra Radiación/farmacología , Resveratrol/farmacología , Antioxidantes/farmacología , Humanos , Células Jurkat , Estructura Molecular , Radiación Ionizante , Especies Reactivas de Oxígeno/metabolismo , Resveratrol/análogos & derivados , Marcadores de Spin
4.
Chem Soc Rev ; 43(21): 7378-411, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25099384

RESUMEN

The use of single molecules in electronics represents the next limit of miniaturisation of electronic devices, which would enable us to continue the trend of aggressive downscaling of silicon-based electronic devices. More significantly, the fabrication, understanding and control of fully functional circuits at the single-molecule level could also open up the possibility of using molecules as devices with novel, not-foreseen functionalities beyond complementary metal-oxide semiconductor technology (CMOS). This review aims at highlighting the chemical design and synthesis of single molecule devices as well as their electrical and structural characterization, including a historical overview and the developments during the last 5 years. We discuss experimental techniques for fabrication of single-molecule junctions, the potential application of single-molecule junctions as molecular switches, and general physical phenomena in single-molecule electronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA