Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(1): 28, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38177567

RESUMEN

KEY MESSAGE: The weighted gene co-expression network analysis and antisense oligonucleotide-mediated transient gene silencing revealed that CsAAP6 plays an important role in amino acid transport during tea shoot development. Nitrogen transport from source to sink is crucial for tea shoot growth and quality formation. Amino acid represents the major transport form of reduced nitrogen in the phloem between source and sink, but the molecular mechanism of amino acid transport from source leaves to new shoots is not yet clear. Therefore, the composition of metabolites in phloem exudates collected by the EDTA-facilitated method was analyzed through widely targeted metabolomics. A total of 326 metabolites were identified in the phloem exudates with the richest variety of amino acids and their derivatives (93), accounting for approximately 39.13% of the total metabolites. Moreover, through targeted metabolomics, it was found that the content of glutamine, glutamic acid, and theanine was the most abundant, and gradually increased with the development of new shoots. Meanwhile, transcriptome analysis suggested that the expression of amino acid transport genes changed significantly. The WGCNA analysis identified that the expression levels of CsAVT1, CsLHTL8, and CsAAP6 genes located in the MEterquoise module were positively correlated with the content of amino acids such as glutamine, glutamic acid, and theanine in phloem exudates. Reducing the CsAAP6 in mature leaves resulted in a significant decrease in the content of glutamic acid, aspartic acid, alanine, leucine, asparagine, glutamine, and arginine in the phloem exudates, indicating that CsAAP6 played an important role in the source to sink transport of amino acids in the phloem. The research results will provide the theoretical basis and genetic resources for the improvement of nitrogen use efficiency and tea quality.


Asunto(s)
Aminoácidos , Glutamina , Aminoácidos/metabolismo , Glutamatos/metabolismo , , Perfilación de la Expresión Génica , Nitrógeno/metabolismo
2.
BMC Microbiol ; 23(1): 250, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679671

RESUMEN

BACKGROUND: Rapeseed cake is an important agricultural waste. After enzymatic fermentation, rapeseed cake not only has specific microbial diversity but also contains a lot of fatty acids, organic acids, amino acids and their derivatives, which has potential value as a high-quality organic fertilizer. However, the effects of fermented rapeseed cake on tea rhizosphere microorganisms and soil metabolites have not been reported. In this study, we aimed to elucidate the effect of enzymatic rapeseed cake fertilizer on the soil of tea tree, and to reveal the correlation between rhizosphere soil microorganisms and nutrients/metabolites. RESULTS: The results showed that: (1) The application of enzymatic rapeseed cake increased the contents of soil organic matter (OM), total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), and available phosphorus (AP); increased the activities of soil urease (S-UE), soil catalase (S-CAT), soil acid phosphatase (S-ACP) and soil sucrase (S-SC); (2) The application of enzymatic rapeseed cake increased the relative abundance of beneficial rhizosphere microorganisms such as Chaetomium, Inocybe, Pseudoxanthomonas, Pseudomonas, Sphingomonas, and Stenotrophomonas; (3) The application of enzymatic rapeseed cake increased the contents of sugar, organic acid, and fatty acid in soil, and the key metabolic pathways were concentrated in sugar and fatty acid metabolisms; (4) The application of enzymatic rapeseed cake promoted the metabolism of sugar, organic acid, and fatty acid in soil by key rhizosphere microorganisms; enzymes and microorganisms jointly regulated the metabolic pathways of sugar and fatty acids in soil. CONCLUSIONS: Enzymatic rapeseed cake fertilizer improved the nutrient status and microbial structure of tea rhizosphere soil, which was beneficial for enhancing soil productivity in tea plantations. These findings provide new insights into the use of enzymatic rapeseed cake as an efficient organic fertilizer and expand its potential for application in tea plantations.


Asunto(s)
Brassica napus , Brassica rapa , Fermentación , Suelo , Fertilizantes , Rizosfera , Ácidos Grasos , Azúcares ,
3.
J Nutr ; 153(11): 3164-3172, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36963501

RESUMEN

Selenoprotein I (SELENOI) has been demonstrated to be an ethanolamine phosphotransferase (EPT) characterized by a nonselenoenzymatic domain and to be involved in the main synthetic branch of phosphatidylethanolamine (PE) in the endoplasmic reticulum. Therefore, defects of SELENOI may affect the health status through the multiple functions of PE. On the other hand, selenium (Se) is covalently incorporated into SELENOI as selenocysteine (Sec) in its peptide, which forms a Sec-centered domain as in the other members of the selenoprotein family. Unlike other selenoproteins, Sec-containing SELENOI was formed at a later stage of animal evolution, and the high conservation of the structural domain for PE synthesis across a wide range of species suggests the importance of EPT activity in supporting the survival and evolution of organisms. A variety of factors, such as species characteristics (age and sex), diet and nutrition (dietary Se and fat intakes), SELENOI-specific properties (tissue distribution and rank in the selenoproteome), etc., synergistically regulate the expression of SELENOI in a tentatively unclear interaction. The N- and C-terminal domains confer 2 distinct biochemical functions to SELENOI, namely PE regulation and antioxidant potential, which may allow it to be involved in numerous physiological processes, including neurological diseases (especially hereditary spastic paraplegia), T cell activation, tumorigenesis, and adipocyte differentiation. In this review, we summarize advances in the biology and roles of SELENOI, shedding light on the precise regulation of SELENOI expression and PE homeostasis by dietary Se intake and pharmaceutical or transgenic approaches to modulate the corresponding pathological status.


Asunto(s)
Antioxidantes , Selenio , Animales , Biología , Etanolaminas , Fosfotransferasas , Selenio/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Humanos
4.
Nature ; 613(7943): 274-279, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631650

RESUMEN

The development of next-generation electronics requires scaling of channel material thickness down to the two-dimensional limit while maintaining ultralow contact resistance1,2. Transition-metal dichalcogenides can sustain transistor scaling to the end of roadmap, but despite a myriad of efforts, the device performance remains contact-limited3-12. In particular, the contact resistance has not surpassed that of covalently bonded metal-semiconductor junctions owing to the intrinsic van der Waals gap, and the best contact technologies are facing stability issues3,7. Here we push the electrical contact of monolayer molybdenum disulfide close to the quantum limit by hybridization of energy bands with semi-metallic antimony ([Formula: see text]) through strong van der Waals interactions. The contacts exhibit a low contact resistance of 42 ohm micrometres and excellent stability at 125 degrees Celsius. Owing to improved contacts, short-channel molybdenum disulfide transistors show current saturation under one-volt drain bias with an on-state current of 1.23 milliamperes per micrometre, an on/off ratio over 108 and an intrinsic delay of 74 femtoseconds. These performances outperformed equivalent silicon complementary metal-oxide-semiconductor technologies and satisfied the 2028 roadmap target. We further fabricate large-area device arrays and demonstrate low variability in contact resistance, threshold voltage, subthreshold swing, on/off ratio, on-state current and transconductance13. The excellent electrical performance, stability and variability make antimony ([Formula: see text]) a promising contact technology for transition-metal-dichalcogenide-based electronics beyond silicon.

5.
Small Sci ; 2(6): 2100124, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35600064

RESUMEN

The current COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an enormous threat to public health. The SARS-CoV-2 3C-like protease (3CLpro), which is critical for viral replication and transcription, has been recognized as an ideal drug target. Herein, it is identified that three herbal compounds, Salvianolic acid A (SAA), (-)-Epigallocatechin gallate (EGCG), and Oridonin, directly inhibit the activity of SARS-CoV-2 3CLpro. Further, blocking SARS-CoV-2 infectivity by Oridonin is confirmed in cell-based experiments. By solving the crystal structure of 3CLpro in complex with Oridonin and comparing it to that of other ligands with 3CLpro, it is identified that Oridonin binds at the 3CLpro catalytic site by forming a C-S covalent bond, which is confirmed by mass spectrometry and kinetic study, blocking substrate binding through a nonpeptidomimetic covalent binding mode. Thus, Oridonin is a novel candidate to develop a new antiviral treatment for COVID-19.

6.
Foods ; 11(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35563933

RESUMEN

Ozone is widely used to control pests in grain and impacts seed germination, a crucial stage in crop establishment which involves metabolic alterations. In this study, dormancy was overcome through after-ripening (AR) in dry barley seed storage of more than 4 weeks; alternatively, a 15-min ozone treatment could break the dormancy of barley immediately after harvest, with accelerated germination efficiency remaining around 96% until 4 weeks. Headspace solid-phase microextraction (HS-SPME) and liquid absorption coupled with gas chromatography mass spectrometry (GC-MS) were utilized for metabolite profiling of 2-, 4- and 7-day germinating seeds. Metabolic changes during barley germination are reflected by time-dependent characteristics. Alcohols, fatty acids, and ketones were major contributors to time-driven changes during germination. In addition, greater fatty acids were released at the early germination stage when subjected to ozone treatment.

7.
J Agric Food Chem ; 70(10): 3127-3135, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35254823

RESUMEN

Ozone is widely used to control pests in grain and has an impact on seed germination. The germination process involves multiple secondary metabolites, such as volatile organic compounds (VOCs), which are altered under ozone treatment. Here, an optimized solid-phase microextraction coupled with gas chromatography-mass spectrometry was implemented to explore changes in VOCs from barley seeds under ozone treatment. The data demonstrated that barley released both a greater variety and quantity of VOCs under oxidative stress. The number of alcohols and hydrocarbons gradually decreased, whereas aldehydes and organic acids markedly increased with increasing ozone treatment time. Acetic acid was identified as a potential ozone stress-specific marker. Furthermore, the dosage-dependent function of acetic acid on the germination of barley was verified, namely, a low dosage of acetic acid increased the germination and vice versa. This study provided new insights into how barley responds to ozone treatment and highlighted the role of acetic acid in seed germination.


Asunto(s)
Hordeum , Ozono , Compuestos Orgánicos Volátiles , Germinación , Hordeum/química , Ozono/análisis , Ozono/farmacología , Semillas/química , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis
8.
BMC Microbiol ; 22(1): 55, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164712

RESUMEN

BACKGROUND: The rhizosphere is the narrow zone of soil immediately surrounding the root, and it is a critical hotspot of microbial activity, strongly influencing the physiology and development of plants. For analyzing the relationship between the microbiome and metabolome in the rhizosphere of tea (Camellia sinensis) plants, the bacterial composition and its correlation to soil metabolites were investigated under three different fertilization treatments (unfertilized, urea, cow manure) in different growing seasons (spring, early and late summer). RESULTS: The bacterial phyla Proteobacteria, Bacteroidetes, Acidobacteria and Actinobacteria dominated the rhizosphere of tea plants regardless of the sampling time. These indicated that the compositional shift was associated with different fertilizer/manure treatments as well as the sampling time. However, the relative abundance of these enriched bacteria varied under the three different fertilizer regimes. Most of the enriched metabolic pathways stimulated by different fertilizer application were all related to sugars, amino acids fatty acids and alkaloids metabolism. Organic acids and fatty acids were potential metabolites mediating the plant-bacteria interaction in the rhizosphere. Bacteria in the genera Proteiniphilum, Fermentimonas and Pseudomonas in spring, Saccharimonadales and Gaiellales in early summer, Acidobacteriales and Gaiellales in late summer regulated relative contents of organic and fatty acids. CONCLUSION: This study documents the profound changes to the rhizosphere microbiome and bacterially derived metabolites under different fertilizer regimes and provides a conceptual framework towards improving the performance of tea plantations.


Asunto(s)
Camellia sinensis/microbiología , Estiércol/análisis , Microbiota/genética , Rizosfera , Microbiología del Suelo , Agricultura , Animales , Bacterias/clasificación , Bacterias/genética , Bovinos , Metaboloma , Microbiota/fisiología , Suelo/química
9.
Molecules ; 26(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34684759

RESUMEN

Traditionally, the supplement of organic manure in tea plantations has been a common approach to improving soil fertility and promoting terroir compounds, as manifested by the coordinated increase in yield and quality for the resulting teas. However, information regarding the effect of organic manure in the metabolome of tea plants is still inadequate. The metabolite profiles of tea shoots applied with cow manure, urea or no fertilizer were studied using gas chromatography-mass spectrometry (GC-MS). In total, 73 metabolites were detected, and the modulated metabolites included mainly amino acids, organic acids and fatty acids. In particular, glutamine, quinic acid and proline accumulated more in tea shoots in soils treated with cow manure, but octadecanoic acid, hexadecanoic acid and eicosanoic acid were drastically reduced. Pearson correlation analysis indicated that organic acids and amino acids in tea shoots were the two major metabolite groups among the three treatments. The analysis of metabolic pathways demonstrated that the cow manure treatment significantly changed the enrichment of pathways related to amino acids, sugars and fatty acids. Sensory evaluation showed that the quality of green teas was higher when the plants used to make the tea were grown in soil treated with cow manure rather than urea during spring and late summer. The results indicated that the application of cow manure in soils changed the metabolic characteristics of tea shoots and improved the qualities of the resulting teas.


Asunto(s)
Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/metabolismo , Estiércol/análisis , Animales , Camellia sinensis/química , Bovinos , China , Fertilizantes/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Metaboloma , Hojas de la Planta/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Suelo , Té/química
10.
BMC Microbiol ; 20(1): 190, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611380

RESUMEN

BACKGROUND: Cow manure is not only an agricultural waste, but also an organic fertilizer resource. The application of organic fertilizer is a feasible practice to mitigate the soil degradation caused by overuse of chemical fertilizers, which can affect the bacterial diversity and community composition in soils. However, to our knowledge, the information about the soil bacterial diversity and composition in tea plantation applied with cow manure fertilization was limited. In this study, we performed one field trial to research the response of the soil bacterial community to cow manure fertilization compared with urea fertilization using the high-throughput sequencing technique of 16S rRNA genes, and analyzed the relationship between the soil bacterial community and soil characteristics during different tea-picking seasons using the Spearman's rank correlation analysis. RESULTS: The results showed that the soil bacterial communities were dominated by Proteobacteria, Bacteroidetes, Acidobacteria and Actinobacteria across all tea-picking seasons. Therein, there were significant differences of bacterial communities in soils with cow manure fertilization (CMF) and urea fertilization (UF) in three seasons: the relative abundance of Bacteroidetes in CMF was significantly higher than that in UF and CK in spring, and the relative abundance of Proteobacteria and Bacteroidetes in CMF was significantly higher than that in UF and CK in autumn. So, the distribution of the dominant phyla was mainly affected by cow manure fertilization. The diversity of bacterial communities in soils with cow manure fertilization was higher than that in soils with urea fertilization, and was the highest in summer. Moreover, soil pH, OM and AK were important environmental properties affecting the soil bacterial community structure in tea plantation. CONCLUSIONS: Although different fertilizers and seasons affect the diversity and structure of soil microorganisms, the application of cow manure can not only improve the diversity of soil bacteria, but also effectively regulate the structure of soil bacterial community in tea plantation. So, cow manure fertilization is more suitable for tea plantation.


Asunto(s)
Bacterias/clasificación , Estiércol/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Té/crecimiento & desarrollo , Agricultura , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Bovinos , ADN Bacteriano/genética , ADN Ribosómico/genética , Fertilización , Secuenciación de Nucleótidos de Alto Rendimiento , Concentración de Iones de Hidrógeno , Filogenia , Microbiología del Suelo , Té/química
11.
Sci Rep ; 10(1): 12275, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32704005

RESUMEN

Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance, but the regulation mechanism of exogenous ABA on tea plants under drought stress was rarely reported. Here, we analyzed the effects of exogenous ABA on genes and metabolites of tea leaves under drought stress using transcriptomic and metabolomic analysis. The results showed that the exogenous ABA significantly induced the metabolic pathways of tea leaves under drought stress, including energy metabolism, amino acid metabolism, lipid metabolism and flavonoids biosynthesis. In which, the exogenous ABA could clearly affect the expression of genes involved in lipid metabolism and flavonoid biosynthesis. Meanwhile, it also increased the contents of flavone, anthocyanins, flavonol, isoflavone of tea leaves under drought stress, including, kaempferitrin, sakuranetin, kaempferol, and decreased the contents of glycerophospholipids, glycerolipids and fatty acids of tea leaves under drought stress. The results suggested that the exogenous ABA could alleviate the damages of tea leaves under drought stress through inducing the expression of the genes and altering the contents of metabolites in response to drought stress. This study will be helpful to understand the mechanism of resilience to abiotic stress in tea plant and provide novel insights into enhancing drought tolerance in the future.


Asunto(s)
Ácido Abscísico/farmacología , Sequías , Flavonoides/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Estrés Fisiológico , Té/fisiología , Aminoácidos/metabolismo , Biomarcadores , Metabolismo Energético , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes , Redes y Vías Metabólicas , Hojas de la Planta/fisiología , Transcriptoma
12.
BMC Genomics ; 21(1): 411, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32552744

RESUMEN

BACKGROUND: Fulvic acid (FA) is a kind of plant growth regulator, which can promote plant growth, play an important role in fighting against drought, improve plant stress resistance, increase production and improve quality. However, the function of FA in tea plants during drought stress remain largely unknown. RESULTS: Here, we examined the effects of 0.1 g/L FA on genes and metabolites in tea plants at different periods of drought stress using transcriptomics and metabolomics profiles. Totally, 30,702 genes and 892 metabolites were identified. Compared with controlled groups, 604 and 3331 differentially expressed metabolite genes (DEGs) were found in FA-treated tea plants at 4 days and 8 days under drought stress, respectively; 54 and 125 differentially expressed metabolites (DEMs) were also found at two time points, respectively. Bioinformatics analysis showed that DEGs and DEMs participated in diverse biological processes such as ascorbate metabolism (GME, AO, ALDH and L-ascorbate), glutathione metabolism (GST, G6PDH, glutathione reduced form and CYS-GYL), and flavonoids biosynthesis (C4H, CHS, F3'5'H, F3H, kaempferol, quercetin and myricetin). Moreover, the results of co-expression analysis showed that the interactions of identified DEGs and DEMs diversely involved in ascorbate metabolism, glutathione metabolism, and flavonoids biosynthesis, indicating that FA may be involved in the regulation of these processes during drought stress. CONCLUSION: The results indicated that FA enhanced the drought tolerance of tea plants by (i) enhancement of the ascorbate metabolism, (ii) improvement of the glutathione metabolism, as well as (iii) promotion of the flavonoids biosynthesis that significantly improved the antioxidant defense of tea plants during drought stress. This study not only confirmed the main strategies of FA to protect tea plants from drought stress, but also deepened the understanding of the complex molecular mechanism of FA to deal with tea plants to better avoid drought damage.


Asunto(s)
Ácido Ascórbico/metabolismo , Benzopiranos/farmacología , Vías Biosintéticas/efectos de los fármacos , Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/efectos de los fármacos , Camellia sinensis/genética , Camellia sinensis/metabolismo , Sequías , Flavonoides/biosíntesis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metabolómica , Proteínas de Plantas/genética , Estrés Fisiológico
13.
BMC Microbiol ; 20(1): 103, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32349665

RESUMEN

BACKGROUND: Different mulches have variable effects on soil physicochemical characteristics, bacterial and fungal communities and ecosystem functions. However, the information about soil microbial diversity, community structure and ecosystem function in tea plantation under different mulching patterns was limited. In this study, we investigated bacterial and fungal communities of tea plantation soils under polyethylene film and peanut hull mulching using high-throughput 16S rRNA and ITS rDNA gene Illumina sequencing. RESULTS: The results showed that the dominant bacterial phyla were Proteobacteria, Actinobacteria, Acidobacteria and Chloroflexi, and the dominant fungal phyla were Ascomycota, Mortierellomycota and Basidiomycota in all samples, but different mulching patterns affected the distribution of microbial communities. At the phylum level, the relative abundance of Nitrospirae in peanut hull mulching soils (3.24%) was significantly higher than that in polyethylene film mulching soils (1.21%) in bacterial communities, and the relative abundances of Mortierellomycota and Basidiomycota in peanut hull mulching soils (33.72, 21.93%) was significantly higher than that in polyethylene film mulching soils (14.88, 6.53%) in fungal communities. Peanut hull mulching increased the diversity of fungal communities in 0-20 cm soils and the diversity of bacterial communities in 20-40 cm soils. At the microbial functional level, there was an enrichment of bacterial functional features, including amino acid transport and metabolism and energy production and conversion, and there was an enrichment of fungal functional features, including undefined saprotrophs, plant pathogens and soils aprotrophs. CONCLUSIONS: Unique distributions of bacterial and fungal communities were observed in soils under organic mulching. Thus, we believe that the organic mulching has a positive regulatory effect on the soil bacterial and fungal communities and ecosystem functions, and so, is more suitable for tea plantation.


Asunto(s)
Bacterias/clasificación , ADN Espaciador Ribosómico/genética , Hongos/clasificación , ARN Ribosómico 16S/genética , Suelo/química , Té/crecimiento & desarrollo , Bacterias/genética , Bacterias/aislamiento & purificación , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , ADN Bacteriano/genética , ADN de Hongos/genética , ADN Ribosómico/genética , Hongos/genética , Hongos/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Consorcios Microbianos , Micobioma , Filogenia , Análisis de Secuencia de ADN , Microbiología del Suelo , Té/química , Té/microbiología
14.
Sci Rep ; 9(1): 17525, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772286

RESUMEN

Cysteine S-nitrosylation is a reversible protein post-translational modification and critically regulates the activity, localization and stability of proteins. Tea (Camellia sinensis (L.) O. Kuntze) is one of the most thoroughly studied evergreen crop due to its broad non-alcoholic beverage and huge economic impact in the world. However, little is known about the S-nitrosylome in this plant. Here, we performed a global analysis of cysteine S-nitrosylation in tea leaves. In total, 228 cysteine S-nitrosylation sites were identified in 191 proteins, representing the first extensive data on the S-nitrosylome in tea plants. These S-nitrosylated proteins were located in various subcellular compartments, especially in the chloroplast and cytoplasm. Furthermore, the analysis of functional enrichment and PPI network revealed that the S-nitrosylated proteins were mainly involved in multiple metabolic pathways, including glycolysis, pyruvate metabolism, Calvin cycle and TCA cycle. Overall, this study not only systematically identified the proteins of S-nitrosylation in cysteines of tea leaves, but also laid the solid foundation for further verifying the roles of S-nitrosylation in cysteines of tea plants.


Asunto(s)
Camellia sinensis/metabolismo , Redes y Vías Metabólicas , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteómica , Cromatografía Líquida de Alta Presión , Cisteína/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Compuestos Nitrosos/metabolismo , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional
15.
BMC Genomics ; 20(1): 340, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31060518

RESUMEN

BACKGROUND: Lysine crotonylation, as a novel evolutionarily conserved type of post-translational modifications, is ubiquitous and essential in cell biology. However, its functions in tea plants are largely unknown, and the full functions of lysine crotonylated proteins of tea plants in nitrogen absorption and assimilation remains unclear. Our study attempts to describe the global profiling of nonhistone lysine crotonylation in tea leaves and to explore how ammonium (NH4+) triggers the response mechanism of lysine crotonylome in tea plants. RESULTS: Here, we performed the global analysis of crotonylome in tea leaves under NH4+ deficiency/resupply using high-resolution LC-MS/MS coupled with highly sensitive immune-antibody. A total of 2288 lysine crotonylation sites on 971 proteins were identified, of which contained in 15 types of crotonylated motifs. Most of crotonylated proteins were located in chloroplast (37%) and cytoplasm (33%). Compared with NH4+ deficiency, 120 and 151 crotonylated proteins were significantly changed at 3 h and 3 days of NH4+ resupply, respectively. Bioinformatics analysis showed that differentially expressed crotonylated proteins participated in diverse biological processes such as photosynthesis (PsbO, PsbP, PsbQ, Pbs27, PsaN, PsaF, FNR and ATPase), carbon fixation (rbcs, rbcl, TK, ALDO, PGK and PRK) and amino acid metabolism (SGAT, GGAT2, SHMT4 and GDC), suggesting that lysine crotonylation played important roles in these processes. Moreover, the protein-protein interaction analysis revealed that the interactions of identified crotonylated proteins diversely involved in photosynthesis, carbon fixation and amino acid metabolism. Interestingly, a large number of enzymes were crotonylated, such as Rubisco, TK, SGAT and GGAT, and their activities and crotonylation levels changed significantly by sensing ammonium, indicating a potential function of crotonylation in the regulation of enzyme activities. CONCLUSIONS: The results indicated that the crotonylated proteins had a profound influence on metabolic process of tea leaves in response to NH4+ deficiency/resupply, which mainly involved in diverse aspects of primary metabolic processes by sensing NH4+, especially in photosynthesis, carbon fixation and amino acid metabolism. The data might serve as important resources for exploring the roles of lysine crotonylation in N metabolism of tea plants. Data were available via ProteomeXchange with identifier PXD011610.


Asunto(s)
Compuestos de Amonio/farmacología , Camellia sinensis/metabolismo , Crotonatos/química , Lisina/química , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Camellia sinensis/efectos de los fármacos , Camellia sinensis/crecimiento & desarrollo , Biología Computacional , Fotosíntesis , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Mapas de Interacción de Proteínas
16.
Sci Rep ; 9(1): 4286, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862833

RESUMEN

Drought stress often affects the expression of genes and proteins in tea plants. However, the global profiling of ubiquitinated (Kub) proteins in tea plants remains unearthed. Here, we performed the ubiquitome in tea leaves under drought stress using antibody-based affinity enrichment coupled with LC-MS/MS analysis. In total, 1,409 lysine Kub sites in 781 proteins were identified, of which 14 sites in 12 proteins were up-regulated and 123 sites in 91 proteins down-regulated under drought stress. The identified Kub proteins were mainly located in the cytosol (31%), chloroplast (27%) and nuclear (19%). Moreover, 5 conserved motifs in EKub, EXXXKub, KubD, KubE and KubA were extracted. Several Kub sites in ubiquitin-mediated proteolysis-related proteins, including RGLG2, UBC36, UEV1D, RPN10 and PSMC2, might affect protein degradation and DNA repair. Plenty of Kub proteins related to catechins biosynthesis, including PAL, CHS, CHI and F3H, were positively correlated with each other due to their co-expression and co-localization. Furthermore, some Kub proteins involved in carbohydrate and amino acid metabolism, including FBPase, FBA and GAD1, might promote sucrose, fructose and GABA accumulation in tea leaves under drought stress. Our study preliminarily revealed the global profiling of Kub proteins in metabolic pathways and provided an important resource for further study on the functions of Kub proteins in tea plants.


Asunto(s)
Camellia sinensis/química , Sequías , Hojas de la Planta/química , Proteínas de Plantas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Cromatografía Liquida , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Espectrometría de Masas en Tándem , Proteínas Ubiquitinadas/genética
17.
BMC Genomics ; 19(1): 840, 2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30477445

RESUMEN

BACKGROUND: Nε-Acetylation of lysine residues, a frequently occurring post-translational modification, plays important functions in regulating physiology and metabolism. However, the information of global overview of protein acetylome under nitrogen-starvation/resupply in tea (Camellia sinensis) leaves was limited. And the full function of lysine acetylated proteins of tea plants in nitrogen absorption and assimilation remains unclear. RESULTS: Here, we performed the global review of lysine acetylome in tea leaves under nitrogen (N)-starvation/resupply, using peptide prefractionation, immunoaffinity enrichment, and coupling with high sensitive LC-MS/MS combined with affinity purification analysis. Altogether, 2229 lysine acetylation sites on 1286 proteins were identified, of which 16 conserved motifs in E*KacK, Kac*K, Kac*R, Kac*HK, Kac*N, Kac*S, Kac*T, Kac*D, were extracted from 2180 acetylated peptides. Approximately, 36.76% of the acetylated lysines were located in the regions of ordered secondary structures. The most of the identified lysine acetylation proteins were located in the chloroplast (39%) and cytoplasm (29%). The largest group of acetylated proteins consisted of many enzymes, such as ATP synthase, ribosomal proteins and malate dehydrogenase [NADP], which were related to metabolism (38%) in the biological process. These acetylated proteins were mainly enriched in three primary protein complexes of photosynthesis: photosystem I, photosystem II and the cytochrome b6/f complex. And some acetylated proteins related to glycolysis and secondary metabolite biosynthesis were increased/decreased under N-resupply. Moreover, the PPI (protein-protein interaction) analysis revealed that the diverse interactions of identified acetylated proteins mainly involved in photosynthesis and ribosome. CONCLUSION: The results suggested that lysine acetylated proteins might play regulating roles in metabolic process in tea leaves. The critical regulatory roles mainly involved in diverse aspects of metabolic processes, especially in photosynthesis, glycolysis and secondary metabolism. A lot of proteins related to the photosynthesis and glycolysis were found to be acetylated, including LHCA1, LHCA3, LHCB6, psaE, psaD, psaN, GAPDH, PEPC, ENL and petC. And some proteins related to flavonoids were also found to be acetylated, including PAL, DFR, naringenin 3-dioxygenase and CHI. The provided data may serve as important resources for exploring the physiological, biochemical, and genetic role of lysine acetylation in tea plants. Data are available via ProteomeXchange with identifier PXD008931.


Asunto(s)
Camellia sinensis/metabolismo , Lisina/química , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Proteoma/análisis , Acetilación , Camellia sinensis/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Procesamiento Proteico-Postraduccional , Transducción de Señal
18.
Nature ; 494(7435): 121-4, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23263184

RESUMEN

Febrifugine is the active component of the Chinese herb Chang Shan (Dichroa febrifuga Lour.), which has been used for treating malaria-induced fever for about 2,000 years. Halofuginone (HF), the halogenated derivative of febrifugine, has been tested in clinical trials for potential therapeutic applications in cancer and fibrotic disease. Recently, HF was reported to inhibit T(H)17 cell differentiation by activating the amino acid response pathway, through inhibiting human prolyl-transfer RNA synthetase (ProRS) to cause intracellular accumulation of uncharged tRNA. Curiously, inhibition requires the presence of unhydrolysed ATP. Here we report an unusual 2.0 Å structure showing that ATP directly locks onto and orients two parts of HF onto human ProRS, so that one part of HF mimics bound proline and the other mimics the 3' end of bound tRNA. Thus, HF is a new type of ATP-dependent inhibitor that simultaneously occupies two different substrate binding sites on ProRS. Moreover, our structure indicates a possible similar mechanism of action for febrifugine in malaria treatment. Finally, the elucidation here of a two-site modular targeting activity of HF raises the possibility that substrate-directed capture of similar inhibitors might be a general mechanism that could be applied to other synthetases.


Asunto(s)
Adenosina Trifosfato/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Piperidinas/química , Piperidinas/metabolismo , Quinazolinonas/química , Quinazolinonas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/farmacología , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Antimaláricos/química , Antimaláricos/farmacología , Sitios de Unión , Cristalografía por Rayos X , Medicina de Hierbas , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Medicina Tradicional China , Modelos Moleculares , Piperidinas/farmacología , Prolina/química , Prolina/metabolismo , Quinazolinas/química , Quinazolinas/farmacología , Quinazolinonas/farmacología , ARN de Transferencia/química , ARN de Transferencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA