Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 19(2): e0294311, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319945

RESUMEN

The in-vitro anti-proliferative evaluation of Sinularia levi total extract against three cell lines revealed its potent effect against Caco-2 cell line with IC50 3.3 µg/mL, followed by MCF-7 and HepG-2 with IC50 6.4 µg/mL and 8.5 µg/mL, respectively, in comparison to doxorubicin. Metabolic profiling of S. levi total extract using liquid chromatography coupled with high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS) revealed the presence of phytoconstituents clusters consisting mainly of steroids and terpenoids (1-20), together with five metabolites 21-25, which were additionally isolated and identified through the phytochemical investigation of S. levi total extract through various chromatographic and spectroscopic techniques. The isolated metabolites included one sesquiterpene, two steroids and two diterpenes, among which compounds prostantherol (21) and 12-hydroperoxylsarcoph-10-ene (25) were reported for the first time in Sinularia genus. The cytotoxic potential evaluation of the isolated compounds revealed variable cytotoxic effects against the three tested cell lines. Compound 25 was the most potent with IC50 value of 2.13 ± 0.09, 3.54 ± 0.07 and 5.67 ± 0.08 µg/mL against HepG-2, MCF-7 and Caco-2, respectively, followed by gorgosterol (23) and sarcophine (24). Additionally, network analysis showed that cyclin-dependent kinase 1 (CDK1) was encountered in the mechanism of action of the three cancer types. Molecular docking analysis revealed that CDK1 inhibition could possibly be the reason for the cytotoxic potential.


Asunto(s)
Antineoplásicos , Farmacología en Red , Humanos , Células CACO-2 , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Extractos Vegetales/farmacología , Esteroides
2.
Fitoterapia ; 164: 105383, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36481366

RESUMEN

Molecular imprinting technique is becoming an appealing and prominent strategy to synthesize materials for target recognition and rapid separation. In recent years, it has been applied in separation of active compounds from various plants and has achieved satisfying results. This review aims to make a brief introduction of molecular imprinting polymers and their efficient application in the separation of various active components from plants, including flavonoids, organic acids, alkaloids, phenylpropanoids, anthraquinones, phenolics, terpenes, steroids, and diketones, which will provide some clues to help stimulating research into this fascinating and useful area.


Asunto(s)
Impresión Molecular , Polímeros , Impresión Molecular/métodos , Estructura Molecular , Flavonoides , Fenoles
3.
Med Chem Res ; 30(10): 1767-1794, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34376964

RESUMEN

Osthole, also known as osthol, is a coumarin derivative found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. It can be obtained via extraction and separation from plants or total synthesis. Plenty of experiments have suggested that osthole exhibited multiple biological activities covering antitumor, anti-inflammatory, neuroprotective, osteogenic, cardiovascular protective, antimicrobial, and antiparasitic activities. In addition, there has been some research done on the optimization and modification of osthole. This article summarizes the comprehensive information regarding the sources and modification progress of osthole. It also introduces the up-to-date biological activities of osthole, which could be of great value for its use in future research.

4.
Artículo en Inglés | MEDLINE | ID: mdl-31234355

RESUMEN

Before being administered as medicinal products, Chinese herbal medicines (CHMs) must be processed and decocted for human consumption. While the presence of pesticide residues in CHMs is a major concern, pesticide dissipation behavior during CHM processing has rarely been reported. In this study, the dissipation of three pesticide residues in the CHM Paeoniae Radix Alba (PRA) was investigated during each step of industrial processing. The boiling process was found to significantly reduce pesticide residues (61-89%), and the peeling process also contributed to pesticide degradation (29-68%). The high temperature (60 °C) during the drying process led to further pesticide degradation. The processing factors of all three pesticides after each processing step were less than one, and the processing factors for the overall process were lower than 0.027, indicating that industrial processing clearly reduced the amount of pesticide residues (97.3-99.4%). The findings provide guidance for the safe use of fungicides in CHMs and can help establish maximum residue limits for PRA to reduce human exposure to pesticides.


Asunto(s)
Medicamentos Herbarios Chinos/química , Fungicidas Industriales/química , Paeonia/química , Industria Química , Calor , Humanos , Residuos de Plaguicidas/análisis
5.
Molecules ; 22(9)2017 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-28841191

RESUMEN

Natural products from the genus Euphorbia show attention-attracting activities, such as anticancer activity. In this article, classical isolation and structure identification were used in a study on Caper Euphorbia Seed. Subsequently, MTT and wound healing assays, flow cytometry, western blotting, Hoechst 33258 staining and fluorescence microscopy examination were applied to investigate the anticancer activity of the obtained compounds. In a result, lathyrol-3-phenyl- acetate-5,15-diacetate (deoxy Euphorbia factor L1, DEFL1) was isolated from Caper Euphorbia Seed. Moreover, the NMR signals were totally assigned. DEFL1 showed potent inhibition against lung cancer A549 cells, with an IC50 value of 17.51 ± 0.85 µM. Furthermore, DEFL1 suppressed wound healing of A549 cells in a concentration-dependent manner. Mechanically, DEFL1 induced apoptosis, with involvement of an increase of reactive oxygen species (ROS), decrease of mitochondrial membrane potential (ΔΨm), release of cytochrome c, activity raise of caspase-9 and 3. Characteristic features of apoptosis were observed by fluorescence microscopy. In summary, DEFL1 inhibited growth and induced apoptosis in lung cancer A549 cells via a mitochondrial pathway.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Euphorbia/química , Células A549 , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Células HCT116 , Humanos , Células KB , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Semillas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA