Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255916

RESUMEN

Chicoric acid (CA) has been reported to exhibit biological activities; it remains unclear, however, whether CA could regulate colitis via modulation of the gut microbiota and metabolites. This study aimed to assess CA's impact on dextran sulfate sodium (DSS)-induced colitis, the gut microbiota, and metabolites. Mice were induced with 2.5% DSS to develop colitis over a 7-day period. CA was administered intragastrically one week prior to DSS treatment and continued for 14 days. The microbial composition in the stool was determined using 16S rRNA sequencing, while non-targeted metabolomics was employed to analyze the metabolic profiles of each mouse group. The results show that CA effectively alleviated colitis, as evidenced by an increased colon length, lowered disease activity index (DAI) and histological scores, and decreased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression levels. CA intervention restored the structure of gut microbiota. Specifically, it decreased the abundance of Bacteroidetes and Cyanobacteria at the phylum level and Bacteroides, Rosiarcus, and unclassified Xanthobacteraceae at the genus level, and increased the abundance of unclassified Lachnospiraceae at the genus level. Metabolomic analysis revealed that CA supplementation reversed the up-regulation of asymmetric dimethylarginine, N-glycolylneuraminic acid, and N-acetylneuraminic acid, as well as the down-regulation of phloroglucinol, thiamine, 4-methyl-5-thiazoleethanol, lithocholic acid, and oxymatrine induced by DSS. Our current research provides scientific evidence for developing CA into an anti-colitis functional food ingredient. Further clinical trials are warranted to elucidate the efficacy and mechanism of CA in treating human inflammatory bowel disease (IBD).


Asunto(s)
Ácidos Cafeicos , Colitis , Microbioma Gastrointestinal , Succinatos , Humanos , Animales , Ratones , Ratones Endogámicos BALB C , Sulfato de Dextran/toxicidad , ARN Ribosómico 16S/genética , Colitis/inducido químicamente , Colitis/tratamiento farmacológico
2.
Crit Rev Food Sci Nutr ; 63(9): 1155-1169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36394558

RESUMEN

Barley is one of the world's oldest cereal crops forming an important component of many traditional diets. Barley is rich in a variety of bioactive phytochemicals with potentially health-promoting effects. However, its beneficial nutritional attributes are not being fully realized because of the limited number of foods it is currently utilized in. It is therefore crucial for the food industry to produce novel barley-based foods that are healthy and cater to customers' tastes. This article reviews the nutritional and functional characteristics of barley, with an emphasis on its ability to improve glucose/lipid metabolism. Then, recent trends in barley product development are discussed. Finally, current limitations and future research directions in glucolipid modulation mechanisms and barley bioprocessing are discussed.


Asunto(s)
Hordeum , Hordeum/química , Suplementos Dietéticos , Nutrientes , Dieta , Grano Comestible
3.
Phytomedicine ; 99: 153969, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35183930

RESUMEN

BACKGROUND: SiNiSan, a Traditional Chinese Medicine containing Radix Bupleuri, Radix Paeoniae Alba, Fructus Aurantii Immaturus, and Radix Glycyrrhizae, has been shown to be clinically effective in treating liver damage, its underlying molecular mechanisms however remains unclear. PURPOSE: The aim of the current study was to understand the molecular mechanisms of SiNiSan in the treatment of liver damage utilizing mice and cell culture models. METHODS: Here, mice were gavaged with 0.2% CCl4 to obtain acute liver injury model and with alcohol to obtain chronic liver injury model. H&E staining was performed to detect liver histomorphology. HPLC-MS was performed to analyze the composition of SiNiSan decoction and SiNiSan-medicated serum (SMS). In addition, western blots were done to analyze the representative protein expression in Wnt/ß-catenin signaling. Immunofluorescence staining was done to analyze the protein levels in WB-F344 cells. Finally, in an attempt to measure the influence of SiNiSan on liver regeneration in rats, we constructed a rats partial hepatectomy models. RESULTS: We demonstrated that SiNiSan treatment mitigated liver damage in mice, as evidenced by the decrease in serum AST and ALT levels, as well as improved liver tissue morphology. HPLC-MS results showed that SMS contained a variety of components from the SiNiSan decoction. Next, our results showed that SMS reduced the expression of α-fetoprotein (AFP) and enhanced the expression of albumin (ALB) and cytokeratin 19 (CK19) in WB-F344 cells. Further, SMS treatment induced the accumulation of ß-catenin. After 14 days of SMS treatment, ß-catenin protein underwent nuclear translocation and bound to the LEF1 receptor in the nucleus, which regulated c-Myc and Cyclin D1 factors to activate Wnt/ß-catenin signaling and promoted differentiation of WB-F344 cells. In addition, we demonstrated that SiNiSan increased liver regeneration in rat hepatectomy. CONCLUSION: Collectively, the current study revealed that SiNiSan alleviated the acute liver injury induced by CCl4 as well as the chronic liver damage triggered by alcohol and sucrose in vitro. Concurrently, SMS treatment induced hepatic stem cell differentiation by activating Wnt/ß-catenin signaling in vivo. Further study showed that SiNiSan promoted the regeneration of rats liver. The current study provides a theoretical basis for the clinical treatment of liver-related diseases with SiNiSan.

4.
Crit Rev Food Sci Nutr ; 62(4): 917-934, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33030031

RESUMEN

Sweet tea (Lithocarpus polystachyus Rehd.) has been consumed as herbal tea to prevent and manage diabetes for a long time. Recent studies indicate that sweet tea is rich in a variety of bioactive compounds, especially a class of nonclassical flavonoids, dihydrochalcones. In order to provide a better understanding of sweet tea and its main dihydrochalcones on human health, this review mainly summarizes related literature in the recent ten years, with the potential molecular mechanisms emphatically discussed. Phlorizin, phloretin, and trilobatin, three natural sweeteners, are the main dihydrochalcones in sweet tea. In addition, sweet tea and its dihydrochalcones exhibit plenty of health benefits, such as antioxidant, anti-inflammatory, antimicrobial, cardioprotective, hepatoprotective, antidiabetic, and anticancer effects, which are associated with the regulation of different molecular targets and signaling pathways. Therefore, sweet tea, as a rare natural source of dihydrochalcones, can be processed and developed into nutraceuticals or functional foods, with the potential application in the prevention and management of certain chronic diseases.


Asunto(s)
Chalconas , Fagaceae , Chalconas/farmacología , Humanos , Hipoglucemiantes/farmacología ,
5.
Oxid Med Cell Longev ; 2021: 6621644, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33728021

RESUMEN

Fatty liver disease (FLD), including nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD), is a serious chronic metabolic disease that affects a wide range of people. Lipid accumulation accompanied by oxidative stress and inflammation in the liver is the most important pathogenesis of FLD. The plant-based, high-fiber, and low-fat diet has been recommended to manage FLD for a long time. This review discusses the current state of the art into the effects, mechanisms, and clinical application of plant-based foods in NAFLD and AFLD, with highlighting related molecular mechanisms. Epidemiological evidence revealed that the consumption of several plant-based foods was beneficial to alleviating FLD. Further experimental studies found out that fruits, spices, teas, coffee, and other plants, as well as their bioactive compounds, such as resveratrol, anthocyanin, curcumin, and tea polyphenols, could alleviate FLD by ameliorating hepatic steatosis, oxidative stress, inflammation, gut dysbiosis, and apoptosis, as well as regulating autophagy and ethanol metabolism. More importantly, clinical trials confirmed the beneficial effects of plant-based foods on patients with fatty liver. However, several issues need to be further studied especially the safety and effective doses of plant-based foods and their bioactive compounds. Overall, certain plant-based foods are promising natural sources of bioactive compounds to prevent and alleviate fatty liver disease.


Asunto(s)
Alimentos , Enfermedad del Hígado Graso no Alcohólico/terapia , Fitoquímicos/uso terapéutico , Plantas/química , Animales , Ensayos Clínicos como Asunto , Humanos , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Fitoquímicos/efectos adversos , Fitoquímicos/química , Transducción de Señal
6.
Crit Rev Food Sci Nutr ; 61(6): 1049-1064, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32292045

RESUMEN

vitexin, an apigenin-8-C-glucoside, is widely present in numerous edible and medicinal plants. vitexin possesses a variety of bioactive properties, including antioxidation, anti-inflammation, anti-cancer, neuron-protection, and cardio-protection. Other beneficial health effects, such as fat reduction, glucose metabolism, and hepatoprotection, have also been reported in recent studies. This review briefly discusses the absorption and metabolism of vitexin, as well as its influence on gut microbiota. Recent advances in understanding the pharmacological and biological effects of vitexin are then reviewed. Improved knowledge of the absorption, metabolism, bioactivity, and molecular targets of vitexin is crucial for the better utilization of this emerging nutraceutical as a chemopreventive and chemotherapeutic agent.


Asunto(s)
Antioxidantes , Apigenina , Antiinflamatorios , Apigenina/farmacología , Suplementos Dietéticos
7.
Food Chem ; 327: 127093, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32470802

RESUMEN

The development of functional foods based on medicinal food ingredients has become a hot topic in China. Di Wu Yang Gan (DWYG) is a Chinese medicinal food that contains five dietary plants. Various health benefits, including anti-inflammation, liver regeneration regulation, have been reported, though the mechanism is not clear. This study aimed to investigate the protective effect of DWYG on carbon tetrachloride-induced acute liver injury (ALI) in embryonic liver L-02 cells and mice model. DWYG-medicated serum protected L-02 cells from carbon tetrachloride-induced damage, reduced the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the culture medium, decreased the expression of Bax and increased the expression of Bcl-2. Mice study suggested that DWYG decreased the levels of malondialdehyde, ALT and AST. Together, these results suggest the hepatoprotective effects of DWYG against ALI and provide an experimental basis for the utilization of DWYG to treat liver damage.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos/farmacología , Hígado/efectos de los fármacos , Alanina Transaminasa/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Tetracloruro de Carbono , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado/metabolismo , Masculino , Malondialdehído/metabolismo , Ratones
8.
J Med Food ; 22(7): 645-652, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30897018

RESUMEN

Chicoric acid, a hydroxycinnamic acid, has been reported to possess a variety of health benefits, including antivirus, antioxidant, anti-inflammation, obesity prevention, and neuroprotection effects. The purpose of this article is to summarize current knowledge of pharmacological and biological effects of chicoric acid. Since most studies to date on chicoric acid have limited their focus to cell cultures and animals, more human and mechanistic studies are therefore needed to further determine the beneficial effects of chicoric acid as a potential functional food ingredient.


Asunto(s)
Ácidos Cafeicos/análisis , Ácidos Cafeicos/metabolismo , Ingredientes Alimentarios/análisis , Alimentos Funcionales/análisis , Succinatos/análisis , Succinatos/metabolismo , Animales , Antioxidantes/análisis , Antioxidantes/metabolismo , Dietoterapia , Humanos
9.
J Med Food ; 19(4): 427-33, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26991055

RESUMEN

Cranberry phenolic compounds have been linked to many health benefits. A recent report suggested that cranberry bioactives inhibit adipogenesis in 3T3-L1 adipocytes. Thus, we investigated the effects and mechanisms of the cranberry product (CP) on lipid metabolism using the Caenorhabditis elegans (C. elegans) model. CP (0.016% and 0.08%) dose-dependently reduced overall fat accumulation in C. elegans (N2, wild type) by 43% and 74%, respectively, without affecting its pumping rates or locomotive activities. CP decreased fat accumulation in aak-2 (an ortholog of AMP-activated kinase α) and tub-1 (an ortholog of TUBBY) mutants significantly, but only minimal effects were observed in sbp-1 (an ortholog of sterol response element-binding protein-1) and nhr-49 (an ortholog of peroxisome proliferator-activated receptor-α) mutant strains. We further confirmed that CP downregulated sbp-1, cebp, and hosl-1 (an ortholog of hormone-sensitive lipase homolog) expression, while increasing the expression of nhr-49 in wild-type C. elegans. These results suggest that CP could effectively reduce fat accumulation in C. elegans dependent on sbp-1, cebp, and nhr-49, but not aak-2 and tub-1.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Grasas/metabolismo , Extractos Vegetales/farmacología , Vaccinium macrocarpon/química , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Masculino
10.
Food Chem ; 167: 438-46, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25149009

RESUMEN

With the prevalence of inflammatory bowel disease (IBD) and its associated risk for development of colorectal cancer, it is of great importance to prevent and treat IBD. However, due to the complexity of etiology and potentially serious adverse effects, treatment options for IBD are relatively limited. Thus, the purpose of this study was to identify a safe food-based approach for the prevention and treatment of IBD. In this study, we tested the effects of cranberry products on preventing dextran sulphate sodium-induced murine colitis. Our results suggest that both cranberry extract and dried cranberries-fed groups had a significantly reduced disease activity index, where dried cranberries were more effective in preventing colitis than cranberry extract. Shortening of colon length, colonic myeloperoxidase activity and production of pro-inflammatory cytokines were attenuated in animals fed dried cranberries compared to the controls. The current report suggests that cranberries can be applied to prevent and reduce the symptoms of IBD.


Asunto(s)
Colitis/inducido químicamente , Sulfato de Dextran/química , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Vaccinium macrocarpon/química , Animales , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA