Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Pharm Biomed Anal ; 234: 115573, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37459834

RESUMEN

Tripterygium wilfordii (TW), a well-known traditional Chinese medicine, was widely used in the treatment of autoimmune disorders and inflammatory diseases. However, the clinical use of TW was limited by severe toxicities, such as hepatotoxicity and nephrotoxicity. Our previous studies indicated that roasting was an effective approach for reducing TW-induced toxicity. After roasting, celastrol was completely decomposed, partially converted into 1-hydroxy-2,5,8-trimethyl-9-fluorenone and the total alkaloids content were significantly reduced. However, the detoxication mechanisms of roasting on TW were poorly unknown. This study aimed to explore the toxicity and detoxification mechanisms of TW after roasting based on urine metabolomics. Promising biomarkers were evaluated by multiple comparison analyses. Sixteen toxicity biomarkers were identified between control group and total extract group. Twelve toxicity biomarkers were identified between control group and total alkaloids group. Eight toxicity biomarkers were identified between control group and celastrol group. These metabolites were mainly involved in seven metabolic pathways, summarized as pentose and glucuronate interconversions, lipid metabolism (sphingolipid metabolism, glycerophospholipid metabolisms, fatty acid biosynthesis and steroid hormone biosynthesis) and amino acid metabolism (taurine and hypotaurine metabolism, tryptophan metabolism). After roasting, the toxicities of total extract, total alkaloids and celastrol were relieved by ameliorative serum parameters and pathological changes in hepatic and renal tissues which revealed that the reduction of celastrol and total alkaloids played important roles in the detoxification of roasting on TW. Furthermore, roasting regulated the levels of fourteen potential biomarkers in the total extract group, ten potential biomarkers in the total alkaloids group and seven candidate biomarkers in the celastrol group to normal levels. Biological pathway analysis revealed that roasting may ameliorate TW-induced metabolic disorders in pentose and glucuronate interconversions, lipid metabolism and amino acid metabolism. This study provided evidence for the application of roasting in TW.


Asunto(s)
Alcaloides , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Espectrometría de Masas en Tándem , Tripterygium/química , Metabolómica , Biomarcadores , Alcaloides/toxicidad , Aminoácidos/metabolismo
2.
Foods ; 12(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37174396

RESUMEN

Probiotics have gained tremendous attention as an alternative to antibiotics, while synbiotics may exhibit a greater growth promoting effect than their counterpart probiotics due to the prebiotics' promotion on the growth and reproduction of probiotics. The objective of this study was to investigate the influence of Lactiplantibacillus plantarum N-1 and its synbiotic with oligomeric isomaltose on the growth performance and meat quality of Hu sheep. Hu sheep (0-3 days old) were fed with water, probiotics of N-1, or synbiotics (N-1 and oligomeric isomaltose) daily in three pens for 60 days and regularly evaluated to measure growth performance and collect serum (five lambs per group). Longissimus thoracis (LT) and biceps brachii (BB) muscle tissues were collected for the analysis of pH value, color, texture, nutrients, mineral elements, amino acids, volatile compounds, and antioxidant capacity. The results showed that dietary supplementation of N-1 tended to improve growth performance and meat quality of Hu sheep, while the synergism of N-1 with oligomeric isomaltose significantly improved their growth performance and meat quality (p < 0.05). Both the dietary supplementation of N-1 and synbiotics (p < 0.05) increased the body weight and body size of Hu sheep. Synbiotic treatment reduced serum cholesterol and improved LT fat content by increasing the transcription level of fatty acid synthase to enhance fat deposition in LT, as determined via RT-qPCR analysis. Moreover, synbiotics increased zinc content and improved LT tenderness by decreasing shear force and significantly increased the levels of certain essential (Thr, Phe, and Met) and non-essential (Asp, Ser, and Tyr) amino acids of LT (p < 0.05). Additionally, synbiotics inhibited the production of carbonyl groups and TBARS in LT and thus maintained antioxidant stability. In conclusion, it is recommended that the use of synbiotics in livestock breeding be promoted to improve sheep production and meat quality.

3.
J Environ Radioact ; 261: 107126, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36805950

RESUMEN

Uranium biomineralization can slow uranium migration in the environment and thus prevent it from further contaminating the surroundings. Investigations into the uranium species, pH, inorganic phosphate (Pi) concentration, and microbial viability during biomineralization by microorganisms are crucial for understanding the mineralization mechanism. In this study, Bacillus thuringiensis X-27 was isolated from soil contaminated with uranium and was used to investigate the formation process of uranium biominerals induced by X-27. The results showed that as biomineralization proceeded, amorphous uranium-containing deposits were generated and transformed into crystalline minerals outside cells, increasing the overall concentration of uramphite. This is a cumulative rather than abrupt process. Notably, B. thuringiensis X-27 precipitated uranium outside the cell surface within 0.5 h, while the release of Pi into the extracellular environment and the change of pH to alkalescence further promoted the formation of uramphite. In addition, cell viability determination showed that the U(VI) biomineralization induced by B. thuringiensis X-27 was instrumental in alleviating the toxicity of U(VI) to cells. This work offers insight into the mechanism of U(VI) phosphate biomineralization and is a reference for bioremediation-related studies.


Asunto(s)
Bacillus thuringiensis , Monitoreo de Radiación , Uranio , Bacillus thuringiensis/metabolismo , Uranio/metabolismo , Biomineralización , Biodegradación Ambiental , Fosfatos/farmacología
4.
Front Plant Sci ; 13: 1031849, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523615

RESUMEN

The roots of Astragalus membranaceus var. mongholicus (AMM) and A. membranaceus (AM) are widely used in traditional Chinese medicine. Although AMM has higher yields and accounts for a larger market share, its cultivation is fraught with challenges, including mixed germplasm resources and widespread adulteration of commercial seeds. Current methods for distinguishing Astragalus seeds from similar (SM) seeds are time-consuming, laborious, and destructive. To establish a non-destructive method, AMM, AM, and SM seeds were collected from various production areas. Machine vision and hyperspectral imaging (HSI) were used to collect morphological data and spectral data of each seed batch, which was used to establish discriminant models through various algorithms. Several preprocessing methods based on hyperspectral data were compared, including multiplicative scatter correction (MSC), standard normal variable (SNV), and first derivative (FD). Then selection methods for identifying informative features in the above data were compared, including successive projections algorithm (SPA), uninformative variable elimination (UVE), and competitive adaptive reweighted sampling (CARS). The results showed that support vector machine (SVM) modeling of machine vision data could distinguish Astragalus seeds from SM with >99% accuracy, but could not satisfactorily distinguish AMM seeds from AM. The FD-UVE-SVM model based on hyperspectral data reached 100.0% accuracy in the validation set. Another 90 seeds were tested, and the recognition accuracy was 100.0%, supporting the stability of the model. In summary, HSI data can be applied to discriminate among the seeds of AMM, AM, and SM non-destructively and with high accuracy, which can drive standardization in the Astragalus production industry.

5.
Microbiol Spectr ; 10(4): e0119922, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35880891

RESUMEN

Streptococcus mutans is known as an important oral pathogen causing dental caries, a widespread oral infectious disease. S. mutans synthesize exopolysaccharide (EPS) using glucosyltransferases (Gtfs), resulting in biofilm formation on the tooth surface. Bacterial cells in the biofilms become strongly resistant to a harsh environment, such as antibiotics and host defense mechanisms, making biofilm-based infections difficult to eliminate. Discovering novel antibiofilm agents, especially from natural products, helps to develop effective strategies against this kind of diseases. The present study investigated the inhibitory effect of shikimic acid (SA), one abundant compound derived from Illicium verum extract, on the biofilm formation of S. mutans. We found SA can reduce the EPS synthesized by this oral pathogen and modulate the transcription of biofilm formation related genes, leading to fewer bacterial cells in its biofilm. SA also interacted with cell membrane and membrane proteins, causing damage to bacterial cells. Ex vivo testing of biofilm formation on bovine teeth showed SA strongly decreased the number of S. mutans cells and the number of EPS accumulated on dental enamel surfaces. Moreover, SA exhibits almost no toxicity to human oral cells evaluated by in vitro biocompatibility assay. In conclusion, shikimic acid exhibits remarkable antibiofilm activity against S. mutans and has the potential to be further developed as a novel anticaries agent. IMPORTANCE Natural products are an important and cost-effective source for screening antimicrobial agents. Here, we identified one compound, shikimic acid, from Illicium verum extract, exhibiting antimicrobial activity against S. mutans proliferation. It also inhibits biofilm formation of this bacteria through decreasing Gtf expression and EPS synthesis. Furthermore, this compound exhibits no significant cytotoxicity at its MIC against S. mutans, providing evidence for its clinical application.


Asunto(s)
Productos Biológicos , Caries Dental , Animales , Biopelículas , Bovinos , Humanos , Extractos Vegetales/farmacología , Ácido Shikímico/farmacología , Streptococcus mutans/fisiología , Factores de Virulencia
6.
Int J Food Sci Nutr ; 73(6): 786-799, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35603582

RESUMEN

The effect of tea polyphenols (TPs) on noodles quality was investigated, and the interaction mechanism between catechins and gliadins was explored. With TPs addition, noodles showed the significant changes in physicochemical and sensory properties. The water absorption, tensile strength and elasticity increased by 1.35%, 4.98%, 28.51% with 0.5% of TPs, and then decreased with the increasing of TPs. According to the determinations of surface hydrophobicity, spatial structure, thermal properties, amidogen and sulfhydryl content, the structure and properties of gliadin were affected by catechins. Esterified catechins tended to disrupt gliadin structures and non-esterified catechins polymerised gliadin molecules. Furthermore, molecular docking results indicated that catechins interacted with gliadin mainly by hydrogen bonds and hydrophobic action. The reactivity of catechins with gliadin was in the sequence as: epigallocatechin gallate > epicatechin gallate > epigallocatechin > epicatechin, which was based on the account of gallate and B-ring hydroxyl number discrepancy. All results suggested that catechins affected greatly on gliadin, and TPs were potentially used to improve the quality of flour products.


Asunto(s)
Catequina , Polifenoles , Catequina/química , Gliadina , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Polifenoles/farmacología , Té/química
7.
FASEB J ; 36(6): e22340, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35524736

RESUMEN

The prevention role of Lactiplantibacillus plantarum against the formation of kidney stones has been increasingly recognized; its mechanism, however, has mainly been focused on inhibiting the inflammation in the colon in the gastrointestinal (GI) system, and the intestinal metabolites from microflora have not been revealed fully with regarding to the stone formation. In this study, we investigated the effect of L. plantarum J-15 on kidney stone formation in renal calcium oxalate (CaOx) rats induced by ethylene glycol and monitored the changes of intestinal microflora and their metabolites detected by 16S rRNA sequencing and widely targeted analysis, followed by the evaluation of the intestinal barrier function and inflammation levels in the colon, blood and kidney. The results showed that L. plantarum J-15 effectively reduced renal crystallization and urinary oxalic acid. Ten microbial genera, including anti-inflammatory and SCFAs-related Faecalibaculum, were enriched in the J-15 treatment group. There are 136 metabolites from 11 categories significantly different in the J-15 supplementation group compared with CaOx model rats, most of which were enriched in the amino acid metabolic and secondary bile acid pathways. The expression of intestinal tight junction protein Occludin and the concentration of pro-inflammatory cytokines and prostaglandin were decreased in the intestine, which further reduced the translocated lipopolysaccharide and inflammation levels in the blood upon J-15 treatment. Thus, the inflammation and injury in the kidney might be alleviated by downregulating TLR4/NF-κB/COX-2 signaling pathway. It suggested that L. plantarum J-15 might reduce kidney stone formation by restoring intestinal microflora and metabolic disorder, protecting intestinal barrier function, and alleviating inflammation. This finding provides new insights into the therapies for renal stones.


Asunto(s)
Microbioma Gastrointestinal , Cálculos Renales , Animales , Oxalato de Calcio/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Cálculos Renales/inducido químicamente , Cálculos Renales/prevención & control , Lactobacillaceae/genética , Lactobacillaceae/metabolismo , Masculino , ARN Ribosómico 16S/genética , Ratas
8.
J Food Sci ; 87(4): 1500-1513, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35279847

RESUMEN

Effect of tea polyphenols (TP) on the quality of Chinese steamed bun (CSB) was investigated, while the interaction and action mechanism between TP and vital wheat gluten (VWG, constitutive proteins of flour) were further explored. With a low concentration (1%) of TP, CSB showed positive changes in quality, and the hardness of CSB decreased by 33.95%, while its specific volume, springiness, and resilience separately increased by 1.8%, 11.9%, and 5.5%, whereas the higher concentrations of TP (2% and 4%) caused an adverse impact. By observation of scanning electron microscope, VWG formed a fluffier structure with a low concentration of TP, while the structure deteriorated at high concentration of TP. In addition, the secondary and tertiary structures of VWG were both changed by TP. Along with the results of thermodynamic analysis (thermogravimetric and differential scanning calorimetry measurements), TP could induce the structural rearrangement of VWG. Further, a lower amidogen and sulfhydryl contents of VWG were obtained in TP groups, which illustrated that peptide and disulfide bonds of VWG were not possibly interrupted by TP. Instead, hydrophobic residues of VWG were bonded to form a more hydrophilic structure. Moreover, according to molecular docking results, epigallocatechin-3-gallate interacted tightly with VWG by hydrogen bonds and hydrophobic actions, and the action sites were mainly at hydrophobic and hydrophilic residues. All results suggested that the VWG structure was affected greatly by TP, and a low dose of TP might be potential to improve the quality of flour products. PRACTICAL APPLICATION: The physicochemical properties of gluten show the significant effects on the quality of flour products in food industry. In the present study, a low dose of tea polyphenols exhibited a strengthened effect on gluten, so as to ameliorate the texture of Chinese steamed bun (CSB) due to their tight interactions with gluten, while the color of CSB was changed to brown as tea polyphenols. All results suggested that a low dose of tea polyphenols could be potentially utilized to improve flour quality and enhance gluten strength in food industry.


Asunto(s)
Glútenes , Polifenoles , China , Glútenes/química , Simulación del Acoplamiento Molecular , Polifenoles/química , Vapor , Té/química
9.
Chemosphere ; 298: 134196, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35276103

RESUMEN

The important role of microbes in the biomineralization and migration behavior of uranium in the field of environmental chemistry has been well emphasized in previous work. However, limited work on mineralization processes of indigenous microorganism has prevented us from a deeper understanding of the process and mechanisms of uranium biomineralization. In this work, the dynamic process and mechanism of uranium biomineralization in Enterobacter sp. X57, a novel uranium-tolerant microorganism separated from uranium contaminated soil, were systematically investigated. Enterobacter sp. X57 can induce intracellular mineralization of U (VI) to Uramphite (NH4UO2PO4·3H2O) under neutral conditions by alkaline phosphatase. In this biomineralization process, soluble U (VI) first bonded with the amino and phosphate groups on the plasma membrane, providing initial nucleation site for the formation of U (VI) biominerals. Then the impairment of cell barrier function and the enhancement of alkaline phosphatase metabolism occurred with the accumulation of uranium in cells, creating a possible pathway for soluble U (VI) to diffuse into the cell and be further mineralized into U (VI)-phosphate minerals. All the results revealed that the intracellular biomineralization of uranium by Enterobacter sp. X57 was a combined result of biosorption, intracellular accumulation and phosphatase metabolism. These findings may contribute to a better understanding of uranium biomineralization behavior and mechanism of microorganisms, as well as possible in-situ bioremediation strategies for uranium by indigenous microorganisms.


Asunto(s)
Uranio , Fosfatasa Alcalina/metabolismo , Biodegradación Ambiental , Biomineralización , Enterobacter/metabolismo , Fosfatos/metabolismo , Uranio/química
10.
Plant Biotechnol J ; 20(6): 1110-1121, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35178867

RESUMEN

Seed morphology and quality of cultivated soybean (Glycine max) have changed dramatically during domestication from their wild relatives, but their relationship to selection is poorly understood. Here, we describe a semi-dominant locus, ST1 (Seed Thickness 1), affecting seed thickness and encoding a UDP-D-glucuronate 4-epimerase, which catalyses UDP-galacturonic acid production and promotes pectin biosynthesis. Interestingly, this morphological change concurrently boosted seed oil content, which, along with up-regulation of glycolysis biosynthesis modulated by ST1, enabled soybean to become a staple oil crop. Strikingly, ST1 and an inversion controlling seed coat colour formed part of a single selective sweep. Structural variation analysis of the region surrounding ST1 shows that the critical mutation in ST1 existed in earlier wild relatives of soybean and the region containing ST1 subsequently underwent an inversion, which was followed by successive selection for both traits through hitchhiking during selection for seed coat colour. Together, these results provide direct evidence that simultaneously variation for seed morphology and quality occurred earlier than variation for seed coat colour during soybean domestication. The identification of ST1 thus sheds light on a crucial phase of human empirical selection in soybeans and provides evidence that our ancestors improved soybean based on taste.


Asunto(s)
Domesticación , Glycine max , Fenotipo , Semillas/química , Semillas/genética , Aceite de Soja , Glycine max/genética
11.
mSystems ; 6(6): e0104521, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34783577

RESUMEN

Renal calcium oxalate (CaOx) stone is a common urologic disease with a high prevalence and recurrence rate. However, short-chain fatty acids (SCFAs) are less often reported in the prevention of urolithiasis. This study aimed to explore the effect of SCFAs on the renal CaOx stone formation and the underlying mechanisms. Ethylene glycol was used to induce renal CaOx crystals in rats. SCFAs (acetate, propionate, or butyrate) were added as supplements to the drinking water with or without antibiotics. Because intestinal oxalate transporters SLC26A6 and SLC26A3 regulate the excretion and absorption of oxalate in the intestine, we injected adeno-associated virus 9 (AAV9)-SLC26A6-shRNA (short hairpin RNA) and AAV9-SLC26A3 into the tail vein of rats to suppress SLC26A6 and overexpress SLC26A3 expression in the intestine, respectively, to explore the role of SLC26A3 and SLC26A6 (SLC26A3/6) in the reduction of renal CaOx crystals induced by SCFAs. Results showed that SCFAs reduced renal CaOx crystals and urinary oxalate levels but, however, increased the abundance of SCFA-producing bacteria and cecum SCFA levels. SCFA supplements still reduced renal crystals and urinary oxalate after gut microbiota depletion. Propionate and butyrate downregulated intestinal oxalate transporter SLC26A3 expression, while acetate and propionate upregulated SLC26A6 expression, both in vivo and in vitro. AAV9-SLC26A3 exerted a protective effect against renal crystals, while AAV9-SLC26A6-shRNA contributed to the renal crystal formation even though the SCFAs were supplemented. In conclusion, SCFAs could reduce urinary oxalate and renal CaOx stones through the oxalate transporter SLC26A6 in the intestine. SCFAs may be new supplements for preventing the formation of renal CaOx stones. IMPORTANCE Some studies found that the relative abundances of short-chain-fatty-acid (SCFA)-producing bacteria were lower in the gut microbiota of renal stone patients than healthy controls. Our previous study demonstrated that SCFAs could reduce the formation of renal calcium oxalate (CaOx) stones, but the mechanism is still unknown. In this study, we found that SCFAs (acetate, propionate, and butyrate) reduced the formation of renal calcium oxalate (CaOx) crystals and the level of urinary oxalate. Depleting gut microbiota increased the amount of renal crystals in model rats, and SCFA supplements reduced renal crystals and urinary oxalate after gut microbiota depletion. Intestinal oxalate transporter SLC26A6 was a direct target of SCFAs. Our findings suggested that SCFAs could reduce urinary oxalate and renal CaOx stones through the oxalate transporter SLC26A6 in the intestine. SCFAs may be new supplements for preventing the formation of renal CaOx stones.

12.
Front Microbiol ; 12: 743097, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630369

RESUMEN

Renal calcium oxalate (CaOx) stones are a common kidney disease. There are few methods for reducing the formation of these stones. However, the potential of probiotics for reducing renal stones has received increasing interest. We previously isolated a strain of Lactiplantibacillus plantarum N-1 from traditional cheese in China. This study aimed to investigate the effects of N-1 on renal CaOx crystal deposition. Thirty rats were randomly allocated to three groups: control group (ddH2O by gavage), model group [ddH2O by gavage and 1% ethylene glycol (EG) in drinking water], and Lactiplantibacillus group (N-1 by gavage and 1% EG in drinking water). After 4 weeks, compared with the model group, the group treated with N-1 exhibited significantly reduced renal crystals (P < 0.05). In the ileum and caecum, the relative abundances of Lactobacillus and Eubacterium ventriosum were higher in the control group, and those of Ruminococcaceae UCG 007 and Rikenellaceae RC9 were higher in the N-1-supplemented group. In contrast, the relative abundances of Staphylococcus, Corynebacterium 1, Jeotgalicoccus, Psychrobacter, and Aerococcus were higher in the model group. We also predicted that the arginase level would be higher in the ileal microbiota of the model group than in the N-1-supplemented group with PICRUSt2. The arginase activity was higher, while the level of arginine was lower in the ileal contents of the model group than in the N-1-supplemented group. The arginine level in the blood was also higher in the N-1-supplemented group than in the model group. In vitro studies showed that exposure to arginine could reduce CaOx crystal adhesion to renal epithelial HK-2 cells. Our findings highlighted the important role of N-1 in reducing renal CaOx crystals by regulating arginine metabolism in the gut microbiota. Probiotics containing L. plantarum N-1 may be potential therapies for preventing renal CaOx stones.

13.
J Food Sci ; 86(7): 2910-2923, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34147039

RESUMEN

The effect of pine needle extract from Cedrus deodara (PNE) on the quality of salted meat was reported, and its action mechanism was further investigated. With the treatment of PNE, the physicochemical properties of salted meat were improved. The peroxide value decreased from 16.18 to 6.78 mmol O2 /kg, while the thiobarbituric acid value decreased from 0.79 to 0.40 mg MDA/kg. Moreover, the salted meat with PNE also had the better texture, color, and volatile compositions. The 0.2% PNE group showed the highest ΔE value (63.16 ± 0.56), hardness (813.5 ± 48.7 g), and volatility (45.86 ± 0.39), while the control group showed the lowest ΔE value (43.92 ± 2.13), hardness (515.8 ± 17.3 g) and volatility (29.97 ± 0.56). In addition, with the analysis of fluorescence and circular dichroism spectroscopy, the spatial structures of myofibrillar protein (MP) in salted meat were obviously changed by PNE. Meanwhile, methylconiferin, 1-O-feruloyl-ß-D-glucose, nortrachelogenin, secoxyloganin, 1-O-(4-coumaroyl)-ß-D-glucose and pelargonidin-3-O-glucoside were identified from PNE. Furthermore, according to the analysis of molecular docking, hydrogen bond, hydrophobic force, and electrostatic force were obtained as the main molecular forces between MP and the phenolic compounds of PNE, while arginine, glutamic acid, and glycine residues were the main binding sites. All results suggested that PNE might be a potential candidate to improve the quality of salted meat in the food industry. PRACTICAL APPLICATION: The quality deterioration of meat may not only affect its further processing and consumption but also may lead to some food safety problems. In present study, PNE exhibited the fine capability to inhibit the oxidation of meat, while it could ameliorate the texture, color, and physicochemical properties of meat due to its tightly interaction with myofibrillar protein. All result suggested that PNE could be potentially utilized to improve the quality of meat in food industry.


Asunto(s)
Cedrus/química , Conservantes de Alimentos/farmacología , Calidad de los Alimentos , Carne/análisis , Extractos Vegetales/farmacología , Sensación , Cloruro de Sodio/química , Animales , Conservantes de Alimentos/química , Humanos , Simulación del Acoplamiento Molecular , Extractos Vegetales/química
14.
J Food Sci ; 86(3): 1114-1123, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33565611

RESUMEN

A functional yogurt was prepared with Ligustrum robustum (Rxob.) Blume extract (LRE), while its antioxidant and hypoglycemic activities were evaluated and its action mechanism was further explored. With the cofermentation of LRE, the yogurt showed the fine quality characteristics, including pH, titratable acidity, texture, syneresis susceptibility, color, microbiological content, and chemical composition. Meanwhile, the yogurt exhibited the remarkable antioxidant capability to enhance the activities of antioxidant enzymes and reduce the malondialdehyde level in animal serums. In addition, the yogurt showed the obvious hypoglycemic activity to inhibit the decrease of glucose tolerance and the increase of postprandial hyperglycemia of diabetes mice. Furthermore, using the analysis of molecular docking, the main compounds of LRE could combine tightly with α-amylase and α-glucosidase by hydrogen bond and hydrophobic interaction, so as to change their spatial structure and inhibit their biocatalytic activity in glucose metabolism. All present results suggested that LRE showed the potential value to be used as supplement to enhance the quality and functions of yogurt in food industry. PRACTICAL APPLICATION: The hypoglycemic and antioxidant activities of a functional yogurt cofermented with LRE were found and its relative action mechanism was also explored. This work provide the experimental and theoretical basis for the application of this yogurt as nutraceuticals to protect human health in food industry.


Asunto(s)
Antioxidantes/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Suplementos Dietéticos/análisis , Hipoglucemiantes/farmacología , Ligustrum/química , Extractos Vegetales/farmacología , Yogur/análisis , Animales , Femenino , Ratones , Simulación del Acoplamiento Molecular
15.
Front Mol Biosci ; 7: 608447, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33659272

RESUMEN

During normal pregnancy, the placental trophoblast secretes a variety of steroid hormones and participates in the regulation of maternal physiological functions and fetal development. The CYP11A1 gene encodes the cholesterol side-chain cleavage enzyme P450scc, which catalyzes the production of pregnenolone from cholesterol, which is the first step in the synthesis of all steroid hormones. Under the influence of genetic susceptibility and certain environmental factors, such as drugs and toxins, the expression of CYP11A1 can be upregulated, thereby affecting steroid metabolism and physiological functions in trophoblast cells, as well as fetal development. Here, we demonstrate that upregulation of CYP11A1 in the BeWo cell line triggers excessive mitochondrial oxidative stress, leads to mitochondrial damage and interleukin-6 release, and contributes to the inhibition of proliferation and DNA damage in neuronal stem cells (NSCs). Furthermore, oxidative stress and inflammation can be ameliorated by vitamin D3 in a dose-dependent manner, thereby facilitating the rescue of NSC impairment. Our findings reveal the underlying mechanism in which upregulation of CYP11A1 is detrimental to the physiological function of trophoblasts and demonstrate the beneficial effects of vitamin D supplementation in preventing placental and neurodevelopmental damage associated with CYP11A1 upregulation during pregnancy.

16.
J Environ Sci (China) ; 53: 9-15, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28372765

RESUMEN

The microbial reduction of U(VI) by Bacillus sp. dwc-2, isolated from soil in Southwest China, was explored using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). Our studies indicated that approximately 16.0% of U(VI) at an initial concentration of 100mg/L uranium nitrate could be reduced by Bacillus sp. dwc-2 at pH8.2 under anaerobic conditions at room temperature. Additionally, natural organic matter (NOM) played an important role in enhancing the bioreduction of U(VI) by Bacillus sp. dwc-2. XPS results demonstrated that the uranium presented mixed valence states (U(VI) and U(IV)) after bioreduction, which was subsequently confirmed by XANES. Furthermore, the TEM and high resolution transmission electron microscopy (HRTEM) analysis suggested that the reduced uranium was bioaccumulated mainly within the cell and as a crystalline structure on the cell wall. These observations implied that the reduction of uranium may have a significant effect on its fate in the soil environment in which these bacterial strains occur.


Asunto(s)
Bacillus/metabolismo , Biodegradación Ambiental , Uranio/metabolismo , China , Oxidación-Reducción
17.
Environ Sci Pollut Res Int ; 23(24): 24846-24856, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27662852

RESUMEN

Uranium(VI) biosorption from aqueous solutions was investigated in batch studies by using fungus Pleurotus ostreatus biomass. The optimal biosorption conditions were examined by investigating the reaction time, biomass dosage, pH, temperature, and uranium initial concentration. The interaction between fungus biomass and uranium was confirmed using Fourier transformed infrared (FT-IR), scanning electronic microscopy energy dispersive X-ray (SEM-EDX), and X-ray photoelectron spectroscopy (XPS) analysis. Results exhibited that the maximum biosorption capacity of uranium on P. ostreatus was 19.95 ± 1.17 mg/g at pH 4.0. Carboxylic, amine, as well as hydroxyl groups were involved in uranium biosorption according to FT-IR analysis. The pseudo-second-order model properly evaluated the U(VI) biosorption on fungus P. ostreatus biomass. The Langmuir equation provided better fitting in comparison with Freundlich isotherm models. The obtained thermodynamic parameters suggested that biosorption is feasible, endothermic, and spontaneous. SEM-EDX and XPS were additionally conducted to comprehend the biosorption process that could be described as a complex process involving several mechanisms of physical adsorption, chemisorptions, and ion exchange. Results obtained from this work indicated that fungus P. ostreatus biomass can be used as potential biosorbent to eliminate uranium or other radionuclides from aqueous solutions.


Asunto(s)
Biodegradación Ambiental , Pleurotus , Uranio , Contaminantes Químicos del Agua , Adsorción , Biomasa , Pleurotus/química , Pleurotus/metabolismo , Uranio/análisis , Uranio/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo
18.
J Environ Sci (China) ; 41: 162-171, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26969062

RESUMEN

The biosorption mechanisms of uranium on an aerobic bacterial strain Streptomyces sporoverrucosus dwc-3, isolated from a potential disposal site for (ultra-)low uraniferous radioactive waste in Southwest China, were evaluated by using transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), proton induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). Approximately 60% of total uranium at an initial concentration of 10mg/L uranium nitrate solution could be absorbed on 100mg S. sporoverrucosus dwc-3 with an adsorption capacity of more than 3.0mg/g (wet weight) after 12hr at room temperature at pH3.0. The dynamic biosorption process of S. sporoverrucosus dwc-3 for uranyl ions was well described by a pseudo second-order model. S. sporoverrucosus dwc-3 could accumulate uranium on cell walls and within the cell, as revealed by SEM and TEM analysis as well as EDX spectra. XPS and FT-IR analysis further suggested that the absorbed uranium was bound to amino, phosphate and carboxyl groups of the cells. Additionally, PIXE and EPBS results confirmed that ion exchange also contributed to the adsorption process of uranium.


Asunto(s)
Contaminantes del Suelo/metabolismo , Streptomyces/metabolismo , Uranio/metabolismo , Biodegradación Ambiental , China , Monitoreo del Ambiente , Streptomyces/aislamiento & purificación
19.
Tuberculosis (Edinb) ; 96: 102-6, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26786661

RESUMEN

Mutations in rpsL, rrs, and gidB are well linked to streptomycin (STR) resistance, some of which are suggested to be potentially associated with Mycobacterium tuberculosis genotypic lineages in certain geographic regions. In this study, we aimed to investigate the mutation characteristics of streptomycin resistance and the relationship between the polymorphism of drug-resistant genes and the lineage of M. tuberculosis isolates in Sichuan, China. A total of 227 M. tuberculosis clinical isolates, including 180 STR-resistant and 47 pan-susceptible isolates, were analyzed for presence of mutations in the rpsL, rrs and gidB loci. Mutation K43R in rpsL was strongly associated with high-level streptomycin resistance (P < 0.01), while mutations in rrs and gidB potentially contributed to low-level resistance (P < 0.05). No general association was exhibited between STR resistance and Beijing genotype, however, in STR-resistant strains, Beijing genotype was significantly correlated with high-level STR resistance, as well as the rpsL mutation K43R (P < 0.01), indicating that Beijing genotype has an evolutionary advantage under streptomycin pressure. Notably, in all isolates of Beijing genotype, a dual mutation E92D (a276c) and A205A (a615g) in gidB was detected, suggesting a highly significant association between this dual mutation and Beijing genotype.


Asunto(s)
Antituberculosos/uso terapéutico , ADN Bacteriano/genética , Farmacorresistencia Bacteriana/genética , Mutación , Mycobacterium tuberculosis/genética , Estreptomicina/uso terapéutico , Tuberculosis Pulmonar/microbiología , China , Análisis Mutacional de ADN , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Fenotipo , Esputo/microbiología , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/tratamiento farmacológico
20.
Talanta ; 148: 539-47, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26653483

RESUMEN

A novel, cost-effective and simple solid phase extraction (SPE) method, by using a syringe connected with a nylon membrane filter as the adsorbent container, was developed for the extraction of triazine herbicides from Radix Paeoniae Alba (RPA) samples. The selective molecularly imprinted polymers (MIPs) synthesized with the template of atrazine were employed as the adsorbents for the enrichment and purification of analytes. The extraction parameters, including the volume and type of loading solvent, the type of washing solvent and eluting solvent, were investigated. Under the optimized conditions, the final extracts were analyzed by ultra-fast liquid chromatography (UFLC). Recoveries of the developed method range from 92.4% to 107.3% with intra- and inter-day relative standard deviations (RSDs) lower than 8.2%. The calibration curve is linear in the concentration range of 0.005-2.4 µg g(-1) for desmetryn, atrazine and terbumeton, and 0.005-1.5 µg g(-1) for dimethametryn and dipropetryn, with the correlation coefficient (R(2)) higher than 0.9995. The limits of detection (LODs) of five triazine herbicides are in the range of 0.09-0.39 ng g(-1), which are lower than the maximum residue levels (MRLs) established by various official organizations. Analytical results of three real Radix Paeoniae Alba samples indicate that the proposed method is cost-effective and easy-to-use than other routine pretreatment methods.


Asunto(s)
Herbicidas/análisis , Impresión Molecular/métodos , Paeonia/química , Extracción en Fase Sólida/métodos , Jeringas , Triazinas/análisis , Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Impresión Molecular/instrumentación , Extractos Vegetales/análisis , Extracción en Fase Sólida/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA