Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 328: 118038, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38479544

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bupleurum chinense DC.-Scutellaria baicalensis Georgi (BS) is a classic drug pair that has good clinical effects on depression and many tumors. However, the concurrent targeting mechanism of how the aforementioned drug pair is valid in the two distinct diseases, has not been clarified yet. AIM OF THE STUDY: The components of BS were detected by LC-MS, combined with network pharmacology to explore the active ingredients and common targeting mechanism of its multi-pathway regulation of BS in treating depression and CRC, and to validate the dual effects of BS using the CUMS mice model and orthotopic transplantation tumor mice model of CRC. RESULTS: Twenty-nine components were screened, 84 common gene targets were obteined, and the top 5 key targets including STAT3, PIK3R1, PIK3CA, AKT1, IL-6 were identified by PPI network. GO and KEGG analyses revealed that PI3K/AKT and JAK/STAT signaling pathways might play a crucial role of BS in regulating depression and CRC. BS significantly modulated CUMS-induced depressive-like behavior, attenuated neuronal damage, and reduced serum EPI and NE levels in CUMS model mice. BS improved the pathological histological changes of solid tumors and liver tissues and inhibited solid tumors and liver metastases in tumor-bearing mice. BS significantly decreased the proteins' expression of IL-6, p-JAK2, p-STAT3, p-PI3K, p-AKT1 in hippocampal tissues and solid tumors, and regulated the levels of IL-2, IL-6 and IL-10 in serum of two models of mice. CONCLUSION: BS can exert dual antidepressant and anti-CRC effects by inhibiting the expression of IL-6/JAK2/STAT3 and PI3K/AKT pathway proteins and regulating the release of inflammatory cytokines.


Asunto(s)
Bupleurum , Neoplasias Colorrectales , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Animales , Ratones , Farmacología en Red , Depresión/tratamiento farmacológico , Interleucina-6 , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Scutellaria baicalensis , Modelos Animales de Enfermedad , Neoplasias Colorrectales/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
2.
Chin Med ; 17(1): 91, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922850

RESUMEN

BACKGROUND: One of the most challenging aspects of colon cancer (CC) prognosis and treatment is liver-tropic metastasis. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (AC) is a typical medication combination for the therapy of many malignancies. Our previous studies found that AC intervention inhibits liver metastasis of colon cancer (LMCC). Nevertheless, the comprehensive anti-metastasis mechanisms of AC have not been uncovered. METHODS: In bioinformatics analysis, RNA-seq data of CC and LMCC patients were collected from TCGA and GEO databases, and differentially expressed genes (DEGs) were identified. The biological processes and signaling pathways involved in DEGs were enriched by GO and KEGG. The protein-protein interaction (PPI) network of DEGs was established and visualized using the Cytocape software, followed by screening Hub genes in the PPI network using Degree value as the criterion. Subsequently, the expression and survival relevance of Hub gene in COAD patients were verified. In the experimental study, the effects of AC on the inhibition of colon cancer growth and liver metastasis were comprehensively evaluated by cellular and animal models. Finally, based on the results of bioinformatics analysis, the possible mechanisms of AC inhibition of colon cancer EMT and liver metastasis were explored by in vivo and in vitro pharmacological experiments. RESULTS: In this study, we obtained 2386 DEGs relevant to LMCC from the COAD (colon adenocarcinoma) and GSE38174 datasets. Results of GO gene function and KEGG signaling pathway enrichment analysis suggested that cellular EMT (Epithelial-mesenchymal transition) biological processes, Cytokine-cytokine receptor interaction and PI3K/Akt signaling pathways might be closely related to LMCC mechanism. We then screened for CXCL8, the core hub gene with the highest centrality within the PPI network of DEGs, and discovered that CXCL8 expression was negatively correlated with the prognosis of COAD patients. In vitro and in vivo experimental evidence presented that AC significantly inhibited colon cancer cell proliferation, migration and invasion ability, and suppressed tumor growth and liver metastasis in colon cancer orthotopic transplantation mice models. Concomitantly, AC significantly reduced CXCL8 expression levels in cell supernatants and serum. Moreover, AC reduced the expression and transcription of genes related to the PI3K/AKT pathway while suppressing the EMT process in colon cancer cells and model mice. CONCLUSIONS: In summary, our research predicted the potential targets and pathways of LMCC, and experimentally demonstrated that AC might inhibit the growth and liver metastasis in colon cancer by regulating EMT via the CXCL8/CXCR2 axis and PI3K/AKT/mTOR signaling pathway, which may facilitate the discovery of mechanisms and new therapeutic strategies for LMCC.

3.
Zhongguo Zhong Yao Za Zhi ; 47(3): 776-785, 2022 Feb.
Artículo en Chino | MEDLINE | ID: mdl-35178961

RESUMEN

The present study explored the underlying mechanism of Astragali Radix-Curcumae Rhizoma-Paridis Rhizoma(AR-CR-PR) in the treatment of colorectal cancer(CRC) by network pharmacology and molecular docking and animal tests and verified the core targets based on the orthotopic transplantation model in nude mice. The active components of AR-CR-PR were retrieved from databases such as TCMSP. The targets of drugs and the disease were obtained from PubChem, SwissTargetPrediction, TTD, and DrugBank, and the intersection targets were imported into STRING for the analysis of the protein-protein interaction(PPI). Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) analyses were performed through DAVID. AutoDock Vina was used to perform molecular docking and binding ability prediction between the active components and the core targets. The effects of AR-CR-PR on tumor growth, metastasis, and phosphorylation of core target proteins in tumor tissues based on the orthotopic transplantation model in nude mice. As revealed by network pharmacology, AR-CR-PR contained nine core components, such as quercetin, curcumin, and ß-ecdysone, and the key targets included protein kinase B(AKT1), mitogen-activated protein kinase 3(MAPK3), MAPK1, and epithelial growth factor receptor(EGFR), which was indicated that the anti-CRC effect of AR-CR-PR was presumedly achieved by regulating tumor cell proliferation, apoptosis, migration, and angiogenesis through PI3 K-AKT, MAPK and other signaling pathways. The results of molecular docking showed that the nine core components had strong binding abilities to AKT1 and MAPK3. The results in vivo showed that AR-CR-PR could reduce the volume of the orthotopic tumor, inhibit liver metastasis, and decrease the phosphorylation of AKT1 and MAPK3 in the CRC model. The mechanism of AR-CR-PR in the intervention of CRC may be related to the activation of PI3 K-AKT and MAPK signaling pathway. This study provides a scientific basis for the clinical application of AR-CR-PR in the treatment of CRC and ideas for modern research on AR-CR-PR.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias , Animales , Medicamentos Herbarios Chinos/farmacología , Ratones , Ratones Desnudos , Simulación del Acoplamiento Molecular , Farmacología en Red , Rizoma
4.
Cell Biol Toxicol ; 38(4): 679-697, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35072892

RESUMEN

Colorectal cancer (CRC) is regarded as one of the commonest cancer types around the world. Due to the poor understanding on the causes of CRC formation and progression, this study sets out to investigate the physiological mechanisms by which Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (ARCR) regulates CRC growth and metastasis, and the role in which M2 macrophage polarization plays in this process. An orthotopic-transplant model of CRC was established to evaluate the influence of ARCR on the polarization of M2 macrophage and the growth and metastasis of tumors. Next, the binding affinity among Sp1, ZFAS1, miR-153-5p, and CCR5 was identified using multiple assays. Finally, after co-culture of bone marrow-derived macrophages (BMDM) with CRC cell line CT26.WT, the cell proliferative, invasive, and migrated abilities were assessed in gain- or loss-of-function experiments. ARCR inhibited the infiltration of M2 macrophages into tumor microenvironment to suppress the CRC growth and metastasis in vivo. Additionally, ARCR inhibited the transcription of ZFAS1 by reducing Sp1 expression to repress M2 macrophage polarization. Moreover, ZFAS1 competitively binds to miR-153-3p to upregulate the CCR5 expression. Finally, ARCR suppressed the polarization of M2 macrophages to inhibit the tumor growth and tumor metastasis in CRC by mediating the Sp1/ZFAS1/miR-153-3p/CCR5 regulatory axis. Collectively, ARCR appears to suppress the CRC cell growth and metastasis by suppressing M2 macrophage polarization via Sp1/ZFAS1/miR-153-3p/CCR5 regulatory axis. 1. ARCR suppress the CRC cell growth and metastasis 2. ZFAS1 promotes CCR5 expression by competitively binding to miR-153-3p. 3. Sp1 promotes M2 macrophage polarization by activating ZFAS1 via miR-153-3p/CCR5. 4. The study unveiled a protective target against CRC.


Asunto(s)
Neoplasias Colorrectales , Activación de Macrófagos , Preparaciones de Plantas , Astragalus propinquus/química , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/patología , Curcuma/química , Humanos , Macrófagos/metabolismo , Macrófagos/patología , MicroARNs/genética , Invasividad Neoplásica , Preparaciones de Plantas/farmacología , ARN Largo no Codificante/genética , Receptores CCR5/metabolismo , Factor de Transcripción Sp1/metabolismo , Microambiente Tumoral
5.
Zhongguo Zhong Yao Za Zhi ; 46(12): 3007-3015, 2021 Jun.
Artículo en Chino | MEDLINE | ID: mdl-34467690

RESUMEN

Cerebral ischemia is one of the most common diseases in China, and the drug pair of Chuanxiong Rhizoma and Paeoniae Radix Rubra can intervene in cerebral ischemia to reduce the inflammatory response of cerebral ischemia and apoptosis. To reveal the intervention mechanism of Chuanxiong Rhizoma-Paeoniae Radix Rubra drug pair on cerebral ischemia systematically, computer network pharmacology technology was used in this paper to predict the target and signaling pathway of the drug pair on the intervention of cerebral ischemia, and then the molecular docking technology was used to further analyze the mechanism of the intervention. The target results were then verified by the rat cerebral ischemia model. The target network results showed that the active compounds of Chuanxiong Rhizoma-Paeoniae Radix Rubra for cerebral ischemic disease contained 30 compounds, 38 targets and 9 pathways. The main compounds included phenolic acids in Chuanxiong Rhizoma and monoterpene glycosides in Paeoniae Radix Rubra. The key targets involved mitogen-activated protein kinase 1(MAPK1), steroid receptor coactivator(SRC), epidermal growth factor receptor(EGFR), mitogen-activated protein kinase 14(MAPK14), caspase-3(CASP3), caspase-7(CASP7), estrogen receptor 1(ESR1), and mitogen-activated protein kinase 8(MAPK8), etc. The target gene functions were biased towards protein kinase activity, protein autophosphorylation, peptidyl-serine phosphorylation and protein serine/threonine kinase activity, etc. The important KEGG pathways involved Ras signaling pathway, ErbB signaling pathway and VEGF signaling pathway. Molecular docking results showed that catechin, oxypaeoniflorin, albiflorin, paeoniflorin and benzoylpaeoniflorin had strong binding ability with MAPK1, SRC, EGFR, MAPK14 and CASP7. MCAO rat experimental results showed that Chuanxiong Rhizoma-Paeoniae Radix Rubra significantly improved the cerebral ischemia injury and interstitial edema, and significantly reduced the activation of caspase-7 and the phosphorylation of ERK1/2. The Chuanxiong Rhizoma-Paeoniae Radix Rubra drug pair alleviated cerebral ischemia injury through a network model of multi-phenotype intervention by promoting cell proliferation and differentiation, reducing inflammatory factor expression, protecting nerve cells from death and figh-ting against neuronal cell apoptosis, with its action signaling pathway most related to Ras signaling pathway, ErbB signaling pathway and VEGF signaling pathway. This study provides the basis for clinical intervention of Chuanxiong Rhizoma-Paeoniae Radix Rubra drug pair on cerebral ischemia, and also provides ideas for the modernization of drug pairs.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Paeonia , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/genética , Infarto Cerebral , Simulación del Acoplamiento Molecular , Ratas , Rizoma
6.
Zhongguo Zhong Yao Za Zhi ; 46(9): 2267-2275, 2021 May.
Artículo en Chino | MEDLINE | ID: mdl-34047130

RESUMEN

Astragali Radix-Curcumae Rhizoma is a classic drug pair mainly used for the treatment of digestive tract-related inflammation and tumors, but the ratio is not fixed in clinical practice. In order to study whether the anti-tumor effect of the drug pair is diffe-rent under different ratios, orthotopic transplantation model of colon cancer was established in mice. Then the principal component analysis(PCA) and cluster analysis(CA) were used to explore the effect of different ratios of the drug pair on the tumor growth and metastasis, and select the optimal ratio of Astragali Radix-Curcumae Rhizoma for anti-colon cancer effect. After administration for 15 days, the body weight of colon cancer mice with the tumor removed, the tumor volume and the number of liver metastases were mea-sured; the pathological changes of tumor tissue and liver tissue were observed by HE staining. At the same time, Western blot method was used to detect the protein expression level of tumor growth-related indicators in tumor tissue(Ki67, HBP1, AFP) and tumor metastasis-related indicators in liver tissue(ß-catenin, E-cadherin, vimentin, p53) of the tumor-bearing mice. Subsequently, PCA and CA were used to select the optimal ratio of Astragali Radix-Curcumae Rhizoma for anti-colon cancer effect. The experimental results showed that different ratios of Astragali Radix-Curcumae Rhizoma inhibited tumor growth and metastasis to varying degrees. The ratio at 1∶1 of Astragali Radix-Curcumae Rhizoma had the best inhibitory effect on tumor growth, and the 2∶1 ratio group had the best effect on inhibiting liver metastasis and improving weighed loss. Astragali Radix-Curcumae Rhizoma significantly up-regulated the protein expression of HBP1 in tumor tissue of colon cancer mice, and significantly down-regulated the protein expression of Ki67 and AFP in tumor tissue; meanwhile, Astragali Radix-Curcumae Rhizoma significantly up-regulated the protein expression of E-cadherin in liver tissue of colon cancer mice, and significantly reduced the protein expression of ß-catenin, vimentin and p53 in liver tissue. PCA results showed that the first three groups in the Astragali Radix-Curcumae Rhizoma compatibility group that were closer to the sham operation group were in the order of 2∶1, 1∶1 and 3∶2, among which the center distance of the 2∶1 group was the shortest from the sham operation group, indicating that the ratio 2∶1 of Astragali Radix-Curcumae Rhizoma had the best intervention effect on colon cancer in mice, consistent with the commonly used clinical proportion. CA results showed that 11 groups of colon cancer mice were classified into 3 categories: Astragali Radix-Curcumae Rhizoma compatibility group, sham operation group and model group, which was consistent with the theory. The results of this study provide a basis for more effective clinical application of Astragali Radix-Curcumae Rhizoma in the treatment of colon cancer, and provide new ideas for the development of classic drug pairs.


Asunto(s)
Planta del Astrágalo , Neoplasias del Colon , Medicamentos Herbarios Chinos , Animales , Neoplasias del Colon/tratamiento farmacológico , Ratones , Raíces de Plantas , Rizoma
7.
J Pharm Biomed Anal ; 193: 113708, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33129117

RESUMEN

Metabolomics, an important part of systems biology, can reveal the complex pathogenesis of many diseases and mechanism of Chinese materia medica (CMM). Astragalus membranaceus-Curcuma wenyujin (AC) was a classic drug pair that has a good clinical effect on gastrointestinal inflammation and many tumors. Our previous research proved that AC can inhibit tumor growth and metastasis especially the colorectal cancer (CRC), also promote the normalization of tumor blood vessels, but its optimal ratio and the specific mechanism is still not clear. In this study, colon cancer mice of orthotopic transplantion model was used to screen the best proportion, UPLC-Q-TOF/MS metabolomics analysis method was established to explore the pathogenesis of colon cancer and the molecular mechanism of AC. The correlation analysis of metabolite changes and tumor growth was analyzed by R language. The result showed that AC at the ratio of 2:1 showed the best effect on inhibiting tumor growth, also the liver and spleen metastasis rate. A total of 23 potential biomarkers were detected in the serum of colon cancer mice by the analysis of Progenesis QI (Version 2.4) software. Among this, 11 metabolites including purines, steroids, phytosphingosine and l-palmitoylcarnitine were up-regulated in CC mice, while 12 metabolites like amino acids, deoxyribose and dihydrobiopterin were down-regulated in CC mice. After the treatment of AC for 15 days, 8 biomarkers were up-regulated, and 9 biomarkers down-regulated. Especially, AC at the ratio of 2:1 showed a significant callback effect on metabolic biomarkers, such as hypoxanthine, xanthosine, 7-methylxanthine, all-trans-retinoic acid, dihomo-γ-linolenic acid. 8 metabolic pathways: Aminoacyl-tRNA biosynthesis, Nicotinate and nicotinamide metabolism, Phenylalanine, tyrosine and tryptophan biosynthesis, Valine, leucine and isoleucine biosynthesis, Phenylalanine metabolism, Caffeine metabolism, Retinol metabolism, Alanine, aspartate and glutamate metabolism were selected as the model group disturbed metabolic pathways after the enrichment of MetaboAnalyst 4.0 online analysis software. And compared with the model group, Valine, leucine and isoleucine biosynthesis, Aminoacyl-tRNA biosynthesis, Caffeine metabolism pathway and Retinol metabolism pathways were altered after the intervention of AC. The correlation analysis results showed that various endogenous metabolites in serum have a strong correlation with tumor weight, such as hypoxanthine, which provides a basis for the selection of clinical markers. The results showed that AC can partially regulate metabolic disorder of CC mice by reversing the changes of metabolites, so as to inhibit the growth and metastasis of colon cancer, especially at the ratio of 2:1. These findings can provide a scientific basis for exploring the diagnostic biomarkers of colon cancer, and for clinical application of AC in the treatment of CRC program.


Asunto(s)
Astragalus propinquus , Neoplasias del Colon , Animales , Biomarcadores , Cromatografía Líquida de Alta Presión , Neoplasias del Colon/tratamiento farmacológico , Curcuma , Espectrometría de Masas , Metabolómica , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA