Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Comput Biol Med ; 169: 107868, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211384

RESUMEN

The San-Ao Decoction (SAD) is a well-known Traditional Chinese Medicine (TCM) formula used to alleviate respiratory symptoms, including asthma. However, its precise mechanisms of action have remained largely unknown. In this study, we utilized computer-aided approaches to explore these mechanisms. Firstly, we conducted a comprehensive analysis of the chemical composition of SAD, which allowed us to identify the 28 main ingredients. Then, we employed computer simulations to investigate the potential active ingredients of SAD and the corresponding binding sites of transient receptor potential vanilloid 1 (TRPV1). The simulations revealed that D509 and D647 were the potential binding sites for TRPV1. Notably, molecular dynamics (MD) studies indicated that site D509 may function as an allosteric site of TRPV1. Furthermore, to validate the computer-aided predictions, we performed experimental studies, including in vitro and in vivo assays. The results of these experiments confirmed the predictions made by our computational models, providing further evidence for the mechanisms of action of San-Ao Decoction in asthma treatment. Our findings demonstrated that: i) D509 and D647 of TRPV1 are the key binding sites for the main ingredients of SAD; ii) SAD or its main ingredients significantly reduce the influx of Ca2+ through TRPV1, following the TCM principle of "Jun, Chen, Zuo, Shi"; iii) SAD shows efficiency in comprehensive in vivo validation. In conclusion, our computer-aided investigation of San-Ao Decoction in asthma treatment has provided valuable insights into the therapeutic mechanisms of this TCM formula. The combination of computational analysis and experimental validation has proven effective in enhancing our understanding of TCM and may pave the way for future discoveries in the field.


Asunto(s)
Asma , Medicamentos Herbarios Chinos , Humanos , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Simulación por Computador
2.
Chem Res Toxicol ; 36(9): 1483-1494, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37622730

RESUMEN

Genipin (GP) is the reactive aglycone of geniposide, the main component of traditional Chinese medicine Gardeniae Fructus (GF). The covalent binding of GP to cellular proteins is suspected to be responsible for GF-induced hepatotoxicity and inhibits drug-metabolizing enzyme activity, although the mechanisms remain to be clarified. In this study, the mechanisms of GP-induced human hepatic P450 inactivation were systemically investigated. Results showed that GP inhibited all tested P450 isoforms via distinct mechanisms. CYP2C19 was directly and irreversibly inactivated without time dependency. CYP1A2, CYP2C9, CYP2D6, and CYP3A4 T (testosterone as substrate) showed time-dependent and mixed-type inactivation, while CYP2B6, CYP2C8, and CYP3A4 M (midazolam as substrate) showed time-dependent and irreversible inactivation. For CYP3A4 inactivation, the kinact/KI values in the presence or absence of NADPH were 0.26 or 0.16 min-1 mM-1 for the M site and 0.62 or 0.27 min-1 mM-1 for the T site. Ketoconazole and glutathione (GSH) both attenuated CYP3A4 inactivation, suggesting an active site occupation- and reactive metabolite-mediated inactivation mechanism. Moreover, the in vitro and in vivo formation of a P450-dependent GP-S-GSH conjugate indicated the involvement of metabolic activation and thiol residues binding in GP-induced enzyme inactivation. Lastly, molecular docking analysis simulated potential binding sites and modes of GP association with CYP2C19 and CYP3A4. We propose that direct covalent binding and metabolic activation mediate GP-induced P450 inactivation and alert readers to potential risk factors for GP-related clinical drug-drug interactions.


Asunto(s)
Citocromo P-450 CYP3A , Gardenia , Humanos , Citocromo P-450 CYP2C19 , Simulación del Acoplamiento Molecular , Sistema Enzimático del Citocromo P-450
3.
J Ethnopharmacol ; 314: 116429, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37011736

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xanthium sibiricum Patrin ex Widder (X. sibiricum) are widely used traditional herbal medicines for arthritis treatment in China. Rheumatoid arthritis (RA) is characterized by progressive destructions of joints, which is accompanied by chronic, progressive inflammatory disorder. According to our previous research, tomentosin was isolated from X. sibiricum and revealed anti-inflammatory activity. However, the potential therapeutic effect of tomentosin on RA and the anti-inflammatory mechanism of tomentosin remain to be clarified. The present study lays theoretical support for X. sibiricum in RA treatment, also provides reference for further development of X. sibiricum in clinic. AIM OF THE STUDY: To investigate the effect of tomentosin in collagen-induced arthritis (CIA) mice and reveal its underlying mechanism. MATERIALS AND METHODS: In vivo, tomentosin (10, 20 and 40 mg/kg) was given to CIA mice for seven consecutive days, to evaluate its therapeutic effect and anti-inflammatory activity. In vitro, THP-1-derived macrophages were used to verify the effect of tomentosin on inflammation. Then, molecular docking and experiments in vitro was conducted to predict and explore the mechanism of tomentosin inhibiting inflammation. RESULTS: Tomentosin attenuated the severity of arthritis in CIA mice, which was evidenced by the swelling of the hind paws, arthritis scores, and pathological changes. Particularly, tomentosin effectively reduced the ratio of M1 macrophage and TNF-α levels in vitro and vivo. Then, molecular docking and experiments in vitro was carried out, indicating that tomentosin inhibited M1 polarization and TNF-α levels accompanied by the increase of MERTK and up-regulated GAS6 levels. Moreover, it has been proved that GAS6 was necessary for MERTK activation and tomentosin could up-regulate GAS6 levels effectively in transwell system. Further mechanistic studies revealed that tomentosin suppressed M1 polarization via increasing MERTK activation mediated by regulation of GAS6 in transwell system. CONCLUSION: Tomentosin relieved the severity of CIA mice by inhibiting M1 polarization. Furthermore, tomentosin suppressed M1 polarization via increasing MERTK activation mediated by regulation of GAS6.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratones , Animales , Tirosina Quinasa c-Mer , Factor de Necrosis Tumoral alfa , Simulación del Acoplamiento Molecular , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología
4.
Chin J Nat Med ; 19(6): 454-463, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34092296

RESUMEN

Natural product bufotenine (5) which could be isolated from Venenum Bufonis, has been widely used as a tool in central nervous system (CNS) studies. We present here its quaternary ammonium salt (6) which was synthesized with high yields using 5-benzyloxyindole as raw materials, and we firstly discover its analgesic effects in vivo. The analgesic evaluation showed that compounds 5 and 6 had stronger effects on the behavior of formalin induced pain in mice. Moreover, the combination of compound 6 and morphine has a synergistic effect. We intended to explain the molecular mechanism of this effect. Therefore, 36 analgesic-related targets (including 15 G protein-coupled receptors, 6 enzymes, 13 ion channels, and 2 others) were systemically evaluated using reverse docking. The results indicate that bufotenine and its derivatives are closely related to acetyl cholinesterase (AChE) or α4ß2 nicotinic acetylcholine receptor (nAChR). This study provides practitioners a new insight of analgesic effects.


Asunto(s)
Analgésicos , Bufotenina/farmacología , Agonistas Nicotínicos , Receptores Nicotínicos , Analgésicos/farmacología , Animales , Ratones , Agonistas Nicotínicos/farmacología , Dolor/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA