Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Agric Food Chem ; 68(34): 9131-9138, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32786873

RESUMEN

Clerodendranthus spicatus, popularly known as "kidney tea" in China, is consumed traditionally as a functional food for treatment of renal inflammation, dysuria, and gout. We evaluated the effects of C. spicatus on gout by assessing activities of antihyperuricemia, anti-gouty arthritis, and analgesia in vivo, and the results indicated that the ethyl acetate fraction shows potential activities. Subsequent phytochemical investigation of this fraction led to the isolation of 32 compounds, consisting of 20 diterpenoids (including the new orthosiphonones E and F), 2 triterpenoids, 6 flavonoids, 2 lignanoids, and 2 phenolic acid derivatives. Pharmacological investigation of the pure compounds in the cellular model of hyperuricemia indicated that 12 compounds could promote the excretion of uric acid at 10 µg/mL, and compounds 3, 4, 5, and 21 had better effects than that of benzbromarone, a famous uricosuric drug. Furthermore, compounds 4, 6, 7, 9, 14, 15, 23, 26, and 31 showed significant anti-gouty arthritis activity in monosodium urate (MSU)-induced joint swelling at the dose of 50 mg/kg, while compounds 4, 5, 7, 9, and 26 exhibited significant inhibition of pain induced by acetic acid. Our findings provided scientific justification to support the traditional application of "kidney tea" for treating gout and suggested its good application prospects in the future.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Supresores de la Gota/administración & dosificación , Supresores de la Gota/química , Gota/tratamiento farmacológico , Orthosiphon/química , Animales , China , Medicamentos Herbarios Chinos/metabolismo , Femenino , Supresores de la Gota/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Estructura Molecular , Orthosiphon/metabolismo , Metabolismo Secundario , Ácido Úrico/metabolismo
2.
Biomed Pharmacother ; 129: 110281, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32554251

RESUMEN

Qingfei Paidu decoction (QFPD), a multi-component herbal formula, has been widely used to treat COVID-19 in China. However, its active compounds and mechanisms of action are still unknown. Firstly, we divided QFPD into five functional units (FUs) according to the compatibility theory of traditional Chinese medicine. The corresponding common targets of the five FUs were all significantly enriched in Go Ontology (oxidoreductase activity, lipid metabolic process, homeostatic process, etc.), KEGG pathways (steroid biosynthesis, PPAR signaling pathway, adipocytokine signaling pathway, etc.), TTD diseases (chronic inflammatory diseases, asthma, chronic obstructive pulmonary Disease, etc.), miRNA (MIR183), kinase (CDK7) and TF (LXR). QFPD contained 257 specific targets in addition to HCoV, pneumonia and ACE2 co-expression proteins. Then, network topology analysis of the five components-target-pathway-disease networks yielded 67 active ingredients. In addition, ADMET estimations showed that 20 compounds passed the stringent lead-like criteria and in silico drug-likeness test with high gastrointestinal absorption and the median lethal dose (LD50 > 1600 mg/kg). Moreover, 4 specific ingredients (M3, S1, X2 and O2) and 5 common ingredients (MS1, MX16, SX1, WO1 and XO1) of QFPD presented good molecular docking score for 2019-nCov structure and non-structure proteins. Finally, drug perturbation of COVID-19 network robustness showed that all five FUs may protect COVID-19 independently, and target 8 specifically expressed drug-attacked nodes which were related to the bacterial and viral responses, immune system, signaling transduction, etc. In conclusion, our new FUNP analysis showed that QFPD had a protection effect on COVID-19 by regulating a complex molecular network with safety and efficacy. Part of the mechanism was associated with the regulation of anti-viral, anti-inflammatory activity and metabolic programming.


Asunto(s)
Antiinflamatorios/farmacología , Antivirales/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Neumonía Viral/tratamiento farmacológico , Antiinflamatorios/administración & dosificación , Antivirales/administración & dosificación , COVID-19 , Simulación por Computador , Infecciones por Coronavirus/virología , Medicamentos Herbarios Chinos/administración & dosificación , Humanos , Dosificación Letal Mediana , Simulación del Acoplamiento Molecular , Pandemias , Neumonía Viral/virología , Tratamiento Farmacológico de COVID-19
3.
Nat Prod Bioprospect ; 8(5): 391-396, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29915912

RESUMEN

Panax notoginseng (Araliaceae) is a famous traditional Chinese medicine mainly cultivated in Yunnan and Guangxi provinces of China. Two new alkaloids, rigidiusculamide E (1) and [-(α-oxyisohexanoyl-N-methyl-leucyl)2-] (2), together with two known ones, (-)-oxysporidinone (3) and (-)-4,6'-anhydrooxysporidinone (4) were isolated from the mycelia culture of Fusarium tricinctum SYPF 7082, an endophytic fungus obtained from the healthy root of P. notoginseng. Their structures were determined on the basis of extensive spectroscopic analyses. Compounds 1-4 were tested for their inhibitory effects against NO production on Murine macrophage cell line, and the new compound 2 showed significant inhibitory activity on NO production with the IC50 value of 18.10 ± 0.16 µM.

4.
Cell Physiol Biochem ; 44(6): 2395-2406, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29262394

RESUMEN

BACKGROUND/AIMS: Dachengqi decoction (DCQD) is a well-known traditional Chinese herbal drug with strong anti-inflammatory effects. Angiopoietin-1 (Ang-1) plays a vital role in maintaining the stability and integrity of the vascular wall and prevents vascular leakage due to inflammatory mediators. Our previous work found that DCQD protects against pancreatic injury in rats with severe acute pancreatitis (SAP). This study aims to investigate the effects of DCQD on intestinal endothelial damage in both damaged human umbilical vein endothelial cells (HUVECs) and SAP rats. METHODS: HUVECs were randomly divided into four groups: control group, TNF-α group, TNF-α plus Ang-1 group (Ang-1 group), and TNF-α plus DCQD group (DCQD group). Cells were incubated for 6 h, 12 h, and 24 h, before collection. The treatment concentration of DCQD was decided based on a Cell Counting Kit-8 (CCK-8) assay. The monolayer permeability of the HUVECs was assessed by measuring the transendothelial electrical resistance (TEER). Apoptosis was analyzed by flow cytometry. mRNA and protein expression of aquaporin 1 (AQP-1), matrix metalloproteinase 9 (MMP9), and junctional adhesion molecule-C (JAM-C) was evaluated by RT-PCR, immunocytofluorescence, and western blot. Forty male Sprague-Dawley rats were randomized into a control group, SAP group, SAP plus Ang-1 group (Ang-1 group), and SAP plus DCQD group (DCQD group). SAP was induced by intraperitoneal injection of cerulein and lipopolysaccharide (LPS), while the control group received 0.9% saline solution. Evans blue was injected through the penile vein and the rats were then sacrificed 12 h after modeling. Levels of serum amylase, TNF-α, IL-1ß, IL-2, and IL-6 were determined by using ELISA. Intestinal tissue was analysed by histology, and capillary permeability in the tissues was evaluated by Evans blue extravasation assay. Protein and mRNA expression of AQP-1, MMP9, and JAM-C were assessed by immunohistofluorescence, western blot, and RT-PCR. RESULTS: DCQD reduced the permeability of HUVEC induced by TNF-α in vitro. Furthermore, DCQD altered the mRNA and protein levels of JAM-C, MMP9, and AQP-1 in HUVECs after TNF-α induction. SAP intestinal injury induced by cerulein combined with lipopolysaccharides was concomitant with increased expression of JAM-C and MMP9, and reduced expression of AQP-1 in intestinal tissue. Pretreatment with DCQD attenuated SAP intestinal injury and lowered the levels of serum amylase, TNF-α, IL-1ß, IL-2, and IL-6 effectively. Our study demonstrated that DCQD decreased the expression of JAM-C and MMP9 and increased the expression of AQP-1 both in vitro and in vivo. CONCLUSION: DCQD can reduce capillary endothelial damage in acute pancreatitis-associated intestinal injury and the mechanism may be associated with the regulation of endothelial barrier function-associated proteins AQP-1, MMP9, and JAM-C.


Asunto(s)
Antiinflamatorios/uso terapéutico , Células Endoteliales/efectos de los fármacos , Intestinos/efectos de los fármacos , Pancreatitis/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Enfermedad Aguda , Animales , Permeabilidad Capilar/efectos de los fármacos , Citocinas/sangre , Medicamentos Herbarios Chinos/uso terapéutico , Células Endoteliales/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Intestinos/irrigación sanguínea , Intestinos/patología , Masculino , Pancreatitis/sangre , Pancreatitis/patología , Ratas , Ratas Sprague-Dawley
5.
Zhongguo Zhong Yao Za Zhi ; 39(9): 1597-602, 2014 May.
Artículo en Chino | MEDLINE | ID: mdl-25095368

RESUMEN

Silver nanoparticles were synthesized from the extract of Fagopyri Dibotryis Rhizoma and the optimization of synthesis was studied. The absorbance of UV-visible spectroscopy was determined under the different influencing factors such as extracting time of Fagopyri Dibotryis Rhizoma powder, reation temperature of synthesis, volume of Fagopyri Dibotryis Rhizoma extract and concentration of AgNO3 to seek the optimization conditions. By means of FT-IR, TEM, DLS and XRD, the silver nanoparticles were characterized. The results showed that when the boiling time of Fagopyri Dibotryis Rhizoma powder was 5 min, resultant temperature was 25 degrees C, the volume ratio of 0.1 g x mL(-1) Fagopyri Dibotryis Rhizoma extract and 1 mmol x L(-1) AgNO3 was 1 to 10, and the reaction time was 3.5 h, the obtained silver nanoparticles had mean size about 27 nm and Zeta potential about -34.3 mV with good uniformity and dispersivity. Therefore, the green synthesis method of silver nanoparticles using extract of traditional Chinese medicine is stable and feasible.


Asunto(s)
Fagopyrum/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Rizoma/química , Plata/química , Luz , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Dispersión de Radiación , Nitrato de Plata/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA