Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 643, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38097929

RESUMEN

BACKGROUND: Bright flower colour assists plants attract insects to complete pollination and provides distinct ornamental values. In some medicinal plants, diverse flower colour variations usually imply differences in active ingredients. Compared to the common bluish purple of Scutellaria baicalensis flower (SB), the natural variants present rose red (SR) and white (SW) flowers were screened out under the same growing conditions in the genuine producing area Shandong Province, China. However, the mechanism of flower colour variation in S. baicalensis was remain unclear. In the present study, we conducted integrated transcriptome and metabolome analyses to uncover the metabolic difference and regulation mechanism in three S. baicalensis flowers. RESULTS: The results showed that 9 anthocyanins were identified. Among which, 4 delphinidin-based anthocyanins were only detected in SB, 4 cyanidin-based anthocyanins (without cyanidin-3-O-glucoside) mainly accumulated in SR, and no anthocyanin but high level of flavanone, naringenin, was detected in SW. The gene expression profile indicated that the key structural genes in the flavonoid and anthocyanin biosynthesis pathway differentially expressed in flowers with different colours. Compared to SB, the down-regulated expression of F3'5'H, ANS, and 3GT gene in SR might influence the anthocyanin composition. Especially the InDel site with deletion of 7 nucleotides (AATAGAG) in F3'5'H in SR might be the determinant for lack of delphinidin-based anthocyanins in rose red flowers. In SW, the lower expression levels of DFR and two F3H genes might reduce the anthocyanin accumulation. Notably the SNP site of G > A mutation in the splicing site of DFR in SW might block anthocyanin biosynthesis from flavanones and thus cause white flowers. In addition, several key transcription factors, including MYB, bHLH, and NAC, which highly correlated with structural gene expression and anthocyanin contents were also identified. CONCLUSIONS: These results provide clues to uncover the molecular regulatory mechanism of flower colour variation in S. baicalensis and promote novel insights into understanding the anthocyanin biosynthesis and regulation.


Asunto(s)
Antocianinas , Scutellaria baicalensis , Antocianinas/metabolismo , Color , Scutellaria baicalensis/genética , Scutellaria baicalensis/metabolismo , Perfilación de la Expresión Génica , Flores/metabolismo , Transcriptoma , Metaboloma , Regulación de la Expresión Génica de las Plantas , Pigmentación/genética
2.
Gene ; 888: 147739, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37633535

RESUMEN

The active ingredients of many medicinal plants are the secondary metabolites associated with the growth period. Lonicera japonica Thunb. is an important traditional Chinese medicine, and the flower development stage is an important factor that influences the quality of medicinal ingredients. In this study, transcriptomics and metabolomics were performed to reveal the regulatory mechanism of secondary metabolites during flowering of L. japonica. The results showed that the content of chlorogenic acid (CGA) and luteolin gradually decreased from green bud stage (Sa) to white flower stage (Sc), especially from white flower bud stage (Sb) to Sc. Most of the genes encoding the crucial rate-limiting enzymes, including PAL, C4H, HCT, C3'H, F3'H and FNSII, were down-regulated in three comparisons. Correlation analysis identified some members of the MYB, AP2/ERF, bHLH and NAC transcription factor families that are closely related to CGA and luteolin biosynthesis. Furthermore, differentially expressed genes (DEGs) involved in hormone biosynthesis, signalling pathways and flowering process were analysed in three flower developmental stage.


Asunto(s)
Ácido Clorogénico , Lonicera , Ácido Clorogénico/metabolismo , Luteolina , Perfilación de la Expresión Génica , Lonicera/genética , Flores/genética , Flores/metabolismo , Hormonas/metabolismo , Transcriptoma/genética
3.
Biomed Pharmacother ; 133: 111072, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33378971

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive pulmonary interstitial inflammatory disease of unknown etiology, and is also a sequela in severe patients with the Coronavirus Disease 2019 (COVID-19). Nintedanib and pirfenidone are the only two known drugs which are conditionally recommended for the treatment of IPF by the FDA. However, these drugs pose some adverse side effects such as nausea and diarrhoea during clinical applications. Therefore, it is of great value and significance to identify effective and safe therapeutic drugs to solve the clinical problems associated with intake of western medicine. As a unique medical treatment, Traditional Chinese Medicine (TCM) has gradually exerted its advantages in the treatment of IPF worldwide through a multi-level and multi-target approach. Further, to overcome the current clinical problems of oral and injectable intakes of TCM, pulmonary drug delivery system (PDDS) could be designed to reduce the systemic metabolism and adverse reactions of the drug and to improve the bioavailability of drugs. Through PubMed, Google Scholar, Web of Science, and CNKI, we retrieved articles published in related fields in recent years, and this paper has summarized twenty-seven Chinese compound prescriptions, ten single TCM, and ten active ingredients for effective prevention and treatment of IPF. We also introduce three kinds of inhaling PDDS, which supports further research of TCM combined with PDDS to treat IPF.


Asunto(s)
COVID-19/complicaciones , Medicamentos Herbarios Chinos/uso terapéutico , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Medicina Tradicional China/métodos , Fitoterapia , Composición de Medicamentos , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia Antigua , Historia Medieval , Humanos , Fibrosis Pulmonar Idiopática/etiología , Fibrosis Pulmonar Idiopática/prevención & control , Medicina Tradicional China/historia , Nebulizadores y Vaporizadores , Terapia Respiratoria
4.
J Ethnopharmacol ; 260: 112995, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32497674

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: the root of Stephania tetrandra S. Moore, known as Fangji in China (Chinese: ), is a traditional Chinese medicine (TCM) with a long history of use. Fangji is a type of medicine used to treat various diseases, including rheumatism, arthralgia, edema and beriberi, unfavorable urination, and eczema. AIM OF THIS REVIEW: There are many newly published reports on the history of uses, phytochemistry, pharmacological activity, quality control and toxicity of Fangji; however, no comprehensive systematic review exists. Therefore, the purpose of this review is to compile the latest and most comprehensive information on Fangji and provide a scientific basis for future research. MATERIALS AND METHODS: A systematic literature search was conducted using multiple electronic databases, including SciFinder, Web of Science, PubMed, Science Direct, ACS Publications, J-stage, SpringerLink, Thieme, Wiley, and CNKI. Information was also collected from journals and Chinese Pharmacopoeia. RESULT: Thus far, there were uses of Fangji against 20 different diseases/disorders, such as relieving edema and rheumatism pain, treating cough and asthma, treating enuresis, astringent urine and beriberi edema, purging blood and damp heat, and dispelling wind evil and dampness, etc. 48 compounds have been isolated from Fangji, belonging to alkaloids, flavonoids, and steroids, other compounds. The crude extracts and isolated compound of Fangji have shown a wide range of pharmacological activities, such as anti-tumor, anti-inflammatory, and neuroprotective activities, as well as role in reoxygenation, and antimicrobial effect, etc. Moreover, qualitative and quantitative analyses of quality control are reviewed, including qualitative analyses for the identification of compounds, as well as fingerprint and quantitative analyses by high performance liquid chromatography (HPLC) and capillary electrochromatography (CE). In the toxicity study, the hepatotoxicity, hepatorenal toxicity, nephrotoxicity, subacute and acute toxicities of the alcohol extract and water extract of Fangji, and tetrandrine were studied in-vitro and in-vivo experiments. CONCLUSION: In the history of uses, Fangji can be used to treat a variety of diseases, most of which are manifested in removing wind and dampness. In recent years, the phytochemistry of Fangji has rarely been reported. The pharmacological activities of Fangji mainly focus on the compounds, tetrandrine and fangchinoline, and there are a few reports on the pharmacological studies of other compounds in Fangji. Moreover, the quality control of Fangji lacks a standard fingerprint to distinguish Fangji from other easily-confused medicinal materials. In the toxicity study, there is no report on the mechanism of toxicity research. Therefore, further studies on such mechanisms are needed.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Extractos Vegetales/farmacología , Stephania tetrandra/química , Animales , Medicamentos Herbarios Chinos/efectos adversos , Medicamentos Herbarios Chinos/química , Humanos , Medicina Tradicional China , Extractos Vegetales/efectos adversos , Extractos Vegetales/química , Raíces de Plantas , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA