Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Res Int ; 165: 112450, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869471

RESUMEN

In this study, hypolipidemic peptides were obtained from tea protein by enzymatic hydrolysis, ultrafiltration and high-performance liquid chromatography. Subsequently, the hypolipidemic peptides were identified by mass spectrometry and screened through molecular docking technology, and the hypolipidemic activities and mechanisms of the active peptides were explored. The results showed that the hydrolysate of hypolipidemic peptides obtained by pepsin hydrolysis for 3 h had good bile salt binding ability. After purification, identification and molecular docking screening, three novel hypolipidemic peptides FLF, IYF and QIF were obtained. FLF, IYF and QIF can interact with the receptor proteins 1LPB and 1F6W through hydrogen bonds, π-π bonds, hydrophobic interactions and van der Waals forces, thus exerting hypolipidemic activities. Activity studies showed that, compared with the positive controls, FLF, IYF and QIF had excellent sodium taurocholate binding abilities, pancreatic lipase inhibitory activities and cholesterol esterase inhibitory activities. Moreover, FLF, IYF and QIF can effectively inhibit lipogenic differentiation of 3T3-L1 preadipocytes, reduce intracellular lipid and low-density lipoprotein content and increase high-density lipoprotein content. These results indicated that the three novel hypolipidemic peptides screened in this study had excellent hypolipidemic activities and were expected to be used as natural-derived hypolipidemic active ingredients for the development and application in functional foods.


Asunto(s)
Lipasa , Péptidos , Ratones , Animales , Simulación del Acoplamiento Molecular , Células 3T3-L1 ,
2.
Funct Integr Genomics ; 22(2): 251-260, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35211836

RESUMEN

Albino tea plants generally have higher theanine, which causes their tea leaves to taste fresher, and they are an important mutant for the breeding of tea plant varieties. Earlier, we reported an albino germplasm, 'Menghai Huangye' (MHHY), from Yunnan Province and found that it has a lower chlorophyll content during the yellowing stage, but the mechanism underlying low chlorophyll and the yellowing phenotype is still unclear. In this study, the pigment contents of MHHY_May (yellowing, low chlorophyll), MHHY_July (regreening, normal chlorophyll), and YK10_May (green leaves, normal chlorophyll) were determined, and the results showed that the lower chlorophyll content might be an important reason for the formation of the yellowing phenotype of MHHY. Through transcriptome sequencing, we obtained 654 candidates for differentially expressed genes (DEGs), among which 4 genes were related to chlorophyll synthesis, 10 were photosynthesis-related, 34 were HSP family genes, and 19 were transcription factor genes. In addition, we analysed the transcription levels of the key candidate genes in MHHY_May and MHHY_July and found that they are consistent with the expression trends in MHHY_May and YK10_May, which further indicates that the candidate differential genes we identified are likely to be key candidate factors involved in the low chlorophyll content and yellowing of MHHY. In summary, our findings will assist in revealing the low chlorophyll content of MHHY and the formation mechanism of yellowing tea plants and will be applied to the selection and breeding of albino tea cultivars in the future.


Asunto(s)
Camellia sinensis , Transcriptoma , Camellia sinensis/genética , China , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo
3.
Plant Sci ; 311: 110997, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34482909

RESUMEN

Yunnan Province has a very wide diversity of tea germplasm resources. A variety of special tea germplasms with outstanding traits have been discovered, including tea germplasms with high anthocyanin content and low caffeine content. Albino tea cultivars generally have higher contents of theanine that contribute to the umami taste, and the quality of tea brewed from it is higher. The catechin index (CI), the ratio of dihydroxylated catechins (DIC) to trihydroxylated catechins (TRIC), is a crucial index of suitability for processing tea. In this study, the albino tea plant Menghai Huangye (MHHY) with yellow leaves was identified. Analysis of the biochemical components revealed that MHHY was enriched in theanine and the total catechins (TC) were lower than Yunkang 10 (YK10). In addition, the CI value of MHHY was extremely significantly higher than that of YK10. Metabolic profile of catechins and the related gene expression profile analysis found that the coordinated expression of the key branch genes F3'H and F3'5'Ha for the synthesis of DIC and TRIC in tea plant was closely related to the high CI and low TC of MHHY. Further analysis of the F3'H promoter showed that a 284-bp deletion mutation was present in the F3'H promoter of MHHY, containing the binding sites of the transcriptional repressor MYB4 involved in flavonoid metabolism, which might be an important reason for the up-regulated expression of F3'H in MHHY. Overall, this study provides a theoretical basis for understanding the characteristics of albino tea germplasm resources and efficiently utilizing high-CI tea germplasm resources.


Asunto(s)
Camellia sinensis/anatomía & histología , Camellia sinensis/genética , Catequina/análisis , Glutamatos/análisis , Pigmentación/genética , Catequina/genética , Genes de Plantas , Variación Genética , Genotipo , Glutamatos/genética , Fenotipo , Transcriptoma
4.
Hereditas ; 157(1): 39, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32900387

RESUMEN

BACKGROUND: The growth process of the tea plant (Camellia sinensis) includes vegetative growth and reproductive growth. The reproductive growth period is relatively long (approximately 1.5 years), during which a large number of nutrients are consumed, resulting in reduced tea yield and quality, accelerated aging, and shortened economic life of the tea plant. The formation of unisexual and sterile flowers can weaken the reproductive growth process of the tea plant. To further clarify the molecular mechanisms of pistil deletion in the tea plant, we investigated the transcriptome profiles in the pistil-deficient tea plant (CRQS), wild tea plant (WT), and cultivated tea plant (CT) by using RNA-Seq. RESULTS: A total of 3683 differentially expressed genes were observed between CRQS and WT flower buds, with 2064 upregulated and 1619 downregulated in the CRQS flower buds. These genes were mainly involved in the regulation of molecular function and biological processes. Ethylene synthesis-related ACC synthase genes were significantly upregulated and ACC oxidase genes were significantly downregulated. Further analysis revealed that one of the WIP transcription factors involved in ethylene synthesis was significantly upregulated. Moreover, AP1 and STK, genes related to flower development, were significantly upregulated and downregulated, respectively. CONCLUSIONS: The transcriptome analysis indicated that the formation of flower buds with pistil deletion is a complex biological process. Our study identified ethylene synthesis, transcription factor WIP, and A and D-class genes, which warrant further investigation to understand the cause of pistil deletion in flower bud formation.


Asunto(s)
Camellia sinensis/genética , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fenotipo , Transcriptoma , Biología Computacional/métodos , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Ontología de Genes
5.
Hereditas ; 156: 12, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31019434

RESUMEN

BACKGROUND: The tea plant is a crucial economic crop. The floral organ development consumes a large amount of nutrients, which affects the leaf yield. To understand the mechanism by which the tea plant produces sterile floral buds, we obtained a sterile tea plant by artificial hybridization. RNA-sequencing based transcriptome analysis was implemented in three samples to determine the differentially expressed genes (DEGs) related to flower development. RESULTS: In this study, a total of 1991 DEGs were identified; 1057 genes were up-regulated and 934 genes were down-regulated in sterile hybrid floral buds. These were mainly distributed in the regulation of biological and metabolic processes. Significantly, auxin biosynthesis genes YUCCA, AUX1 and PIN were dramatically down-regulated, and ARF gene was up-regulated in the sterile hybrid floral buds, and flower development-related genes AP1, AP2 and SPL were changed. A total of 12 energy transfer-related genes were significantly decreased. Furthermore, the expression of 11 transcription factor genes was significantly different. CONCLUSION: The transcriptome analysis suggested that the production of sterile floral buds is a complex bioprocess, and that low auxin-related gene levels result in the formation of sterile floral buds in the tea plant.


Asunto(s)
Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Reproducción/genética , Té/genética , Transcriptoma , Biología Computacional/métodos , Ontología de Genes , Anotación de Secuencia Molecular , Desarrollo de la Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA