Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 36(9): e2307006, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37924225

RESUMEN

The ferroptosis pathway is recognized as an essential strategy for tumor treatment. However, killing tumor cells in deep tumor regions with ferroptosis agents is still challenging because of distinct size requirements for intratumoral accumulation and deep tumor penetration. Herein, intelligent nanocapsules with size-switchable capability that responds to acid/hyperthermia stimulation to achieve deep tumor ferroptosis are developed. These nanocapsules are constructed using poly(lactic-co-glycolic) acid and Pluronic F127 as carrier materials, with Au-Fe2 C Janus nanoparticles serving as photothermal and ferroptosis agents, and sorafenib (SRF) as the ferroptosis enhancer. The PFP@Au-Fe2 C-SRF nanocapsules, designed with an appropriate size, exhibit superior intratumoral accumulation compared to free Au-Fe2 C nanoparticles, as evidenced by photoacoustic and magnetic resonance imaging. These nanocapsules can degrade within the acidic tumor microenvironment when subjected to laser irradiation, releasing free Au-Fe2 C nanoparticles. This enables them to penetrate deep into tumor regions and disrupt intracellular redox balance. Under the guidance of imaging, these PFP@Au-Fe2 C-SRF nanocapsules effectively inhibit tumor growth when exposed to laser irradiation, capitalizing on the synergistic photothermal and ferroptosis effects. This study presents an intelligent formulation based on iron carbide for achieving deep tumor ferroptosis through size-switchable cascade delivery, thereby advancing the comprehension of ferroptosis in the context of tumor theranostics.


Asunto(s)
Compuestos Inorgánicos de Carbono , Ferroptosis , Hipertermia Inducida , Compuestos de Hierro , Nanocápsulas , Nanopartículas , Neoplasias , Humanos , Línea Celular Tumoral , Neoplasias/terapia , Sorafenib , Hipertermia/terapia , Hipertermia Inducida/métodos , Microambiente Tumoral
2.
J Am Chem Soc ; 145(20): 11019-11032, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37190936

RESUMEN

Biomedical micro/nanorobots as active delivery systems with the features of self-propulsion and controllable navigation have made tremendous progress in disease therapy and diagnosis, detection, and biodetoxification. However, existing micro/nanorobots are still suffering from complex drug loading, physiological drug stability, and uncontrollable drug release. To solve these problems, micro/nanorobots and nanocatalytic medicine as two independent research fields were integrated in this study to achieve self-propulsion-induced deeper tumor penetration and catalytic reaction-initiated tumor therapy in vivo. We presented self-propelled Janus nanocatalytic robots (JNCRs) guided by magnetic resonance imaging (MRI) for in vivo enhanced tumor therapy. These JNCRs exhibited active movement in H2O2 solution, and their migration in the tumor tissue could be tracked by non-invasive MRI in real time. Both increased temperature and reactive oxygen species production were induced by near-infrared light irradiation and iron-mediated Fenton reaction, showing great potential for tumor photothermal and chemodynamic therapy. In comparison with passive nanoparticles, these self-propelled JNCRs enabled deeper tumor penetration and enhanced tumor therapy after intratumoral injection. Importantly, these robots with biocompatible components and byproducts exhibited biosecurity in the mouse model. It is expected that our work could promote the combination of micro/nanorobots and nanocatalytic medicine, resulting in improved tumor therapy and potential clinical transformations.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Robótica , Animales , Ratones , Peróxido de Hidrógeno , Hipertermia Inducida/métodos , Línea Celular Tumoral , Neoplasias/terapia , Nanopartículas/uso terapéutico , Imagen por Resonancia Magnética/métodos
3.
Am J Transplant ; 20(9): 2413-2424, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32243709

RESUMEN

Approximately 33.6% of nondiabetic solid organ transplant recipients who received tacrolimus developed hyperglycemia. Whether the tacrolimus-induced gut microbiota is involved in the regulation of hyperglycemia has not been reported. Hyperglycemia was observed in a tacrolimus-treated mouse model, with reduction in taxonomic abundance of butyrate-producing bacteria and decreased butyric acid concentration in the cecum. This tacrolimus-induced glucose metabolic disorder was caused by the gut microbiota, as confirmed by a broad-spectrum antibiotic model. Furthermore, oral supplementation with butyrate, whether for remedy or prevention, significantly increased the butyric acid content in the cecum and arrested hyperglycemia through the regulation of glucose-regulating hormones, including glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and insulin, in serum. The butyrate-G-protein-coupled receptor 43-GLP-1 pathway in the intestinal crypts may be involved in the pathogenesis of normalization of hyperglycemia caused by the tacrolimus. Therefore, tacrolimus affects glucose metabolism through the butyrate-associated GLP-1 pathway in the gut, and oral supplementation with butyrate provides new insights for the prevention and treatment of tacrolimus-induced hyperglycemia in transplant recipients.


Asunto(s)
Microbioma Gastrointestinal , Hiperglucemia , Animales , Ácido Butírico , Péptido 1 Similar al Glucagón , Hiperglucemia/inducido químicamente , Hiperglucemia/tratamiento farmacológico , Ratones , Tacrolimus/efectos adversos
4.
J Hazard Mater ; 381: 120994, 2020 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-31425912

RESUMEN

The development of photocatalysts making full use of natural light sources is highly desired for the remediation of marine oil spill pollution, which is full of challenges. Herein, we demonstrate a well-defined visible-near-infrared-responsive g-C3N4Hx+ reduced decatungstate charge-transfer salt (RCD-CTS), which possess efficient light-absorption ability ranging from visible light to the near infrared region. The RCD-CTS photocatalyst exhibits excellent performance for photocatalytic removal of petroleum hydrocarbon. The structural characterization and theoretical calculation confirmed strong chemical interaction between components and partly reduction of decatungstate results in the plasmonic properties and the absorption of near infrared light. As a results, it is proposed that"hot electrons"transfer process generated by plasmon effect promotes the efficient separation of charge-carriers. Ultimately, this work sheds light on the discovery and application of visible-near-infrared-responsive optical materials that may be exploited further in artificial photosynthesis, solar energy conversion, and phototherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA