Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Microbiol ; 77(3): 452-459, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31897664

RESUMEN

Therapeutic potential of biosurfactant (BS) has been improved in recent years. Our present study deals with production of BS from Planococcus maritimus SAMP MCC 3013 in a mineral salt medium (MSM) supplemented with glucose (1.5% w/v). Further, BS has been purified and partially characterized as glycolipid type through our previous publication. Current research article aimed to evaluate biological potential of BS against Mycobacterium tuberculosis, Plasmodium falciparum and cancerous cell lines. Planococcus derived glycolipid BS was found to be a promising inhibitor of M. tuberculosis (MTB) H37Ra at IC50 64.11 ± 1.64 µg/mL and MIC at 160.8 ± 1.64 µg/mL. BS also showed growth inhibition of P. falciparum at EC50 34.56 ± 0.26 µM. Additionally, BS also displayed the cytotoxicity against HeLa (IC50 41.41 ± 4.21 µg/mL), MCF-7 (IC50 42.79 ± 6.07 µg/mL) and HCT (IC50 31.233 ± 5.08 µg/mL) cell lines. Molecular docking analysis was carried for the most popular glycolipid type BS namely Rhamnolipid (RHL) aiming to interpret the possible binding interaction for anti-tubercular and anti-cancer activity. This analysis revealed the involvement of RHL binding with enoyl reductase (InhA) of M. tuberculosis. Docking studies of RHL with tubulin directed several hydrophobic and Vander Waal interactions to exhibit anti-cancer potential. The present study will be helpful for further development of marine bioactive molecules for therapeutic applications. Their anti-tubercular, anti-plasmodial and cytotoxic activities make BS molecules as a noteworthy candidate to combat several diseases. To the best of our knowledge, this is the first report on projecting the pharmacological potential of Planococcus derived BS.


Asunto(s)
Antiprotozoarios/farmacología , Antituberculosos/farmacología , Planococcaceae/química , Tensoactivos/farmacología , Antineoplásicos/farmacología , Proteínas Bacterianas/farmacología , Sitios de Unión , Línea Celular Tumoral , Medios de Cultivo/química , Glucosa/farmacología , Células HCT116 , Células HeLa , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Planococcaceae/crecimiento & desarrollo , Plasmodium falciparum/efectos de los fármacos
2.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31053581

RESUMEN

Idli, a naturally fermented Indian food, is prepared from a mixture of rice and black gram (lentil). To understand its microbial community during fermentation, detailed analysis of the structural and functional dynamics of the idli microbiome was performed by culture-dependent and -independent approaches. The bacterial diversity and microbial succession were assessed at different times of fermentation by 16S rRNA amplicon sequencing. Results highlighted that most microbiota belonged to phylum Firmicutes (70%) and Proteobacteria (22%). Denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) analysis confirmed the diversity and succession involved therein. A culture-dependent approach revealed that the microbially diverse populations were conserved across different geographical locations. The fermentation was primarily driven by lactic acid bacteria as they constitute 86% of the total bacterial population, and genus Weissella emerged as the most important organism in fermentation. The natural microbiota of the grains mainly drives the fermentation, as surface sterilized grains did not show any fermentation. Growth kinetics of idli microbiota and physicochemical parameters corroborated the changes in microbial dynamics, acid production, and leavening occurring during fermentation. Using a metagenomic prediction tool, we found that the major metabolic activities of these microbial fermenters were augmented during the important phase of fermentation. The involvement of the heterofermentative hexose monophosphate (HMP) pathway in batter leavening was substantiated by radiolabeled carbon dioxide generated from d-[1-14C]-glucose. Hydrolases degrading starch and phytins and the production of B vitamins were reported. Moreover, culturable isolates showing beneficial attributes, such as acid and bile tolerance, hydrophobicity, antibiotic sensitivity, and antimicrobial activity, suggest idli to be a potential dietary supplement.IMPORTANCE This is a comprehensive analysis of idli fermentation employing modern molecular tools which provided valuable information about the bacterial diversity enabling its fermentation. The study has demonstrated the relationship between the bacterial population and its functional role in the process. The nature of idli fermentation was found to be more complex than other food fermentations due to the succession of the bacterial population. Further studies using metatranscriptomics and metabolomics may enhance the understanding of this complex fermentation process. Moreover, the presence of microorganisms with beneficial properties plausibly makes idli a suitable functional food.


Asunto(s)
Bacterias/aislamiento & purificación , Fermentación , Microbiología de Alimentos , Microbiota , Oryza/microbiología , Bacterias/clasificación , Desayuno , India , Oryza/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA