RESUMEN
Spilanthes acmella Murr., a well-known Thai traditional medicine, has been used for treatment of toothache, rheumatism, and fever. Diverse pharmacological activities of S. acmella Murr. have been reported. In this study, antioxidative and neuroprotective effects of S. acmella Murr. extracts as well as bioactive scopoletin, vanillic acid, and trans-ferulic acid found in the aerial parts of this plant species have been described. Protective effect of S. acmella Murr. extracts and bioactive compounds on dexamethasone-induced neuronal cell death was investigated. Different plant crude ethyl acetate (EtOAc) and methanol (MeOH) extracts including pure compounds of S. acmella Murr. were evaluated in human neuroblastoma SH-SY5Y cells. Cytotoxic effects were performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Mechanisms involved in the antioxidant effects of S. acmella Murr. regarding the activation of antioxidant marker proteins such as superoxide dismutase 2 (SOD2) and sirtuin 3 (SIRT3) were determined using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay, Western blot analysis, and immunocytochemistry. Dexamethasone significantly caused the decrease of SH-SY5Y cell viability. Conversely, the increases in reactive oxygen species (ROS), autophagy, and apoptosis were observed in dexamethasone-treated cells. S. acmella Murr. MeOH and EtOAc extracts, as well as the bioactive compounds, reversed the toxic effect of dexamethasone by increasing the cell viability, SIRT3 protein expression but reducing the ROS, autophagy, and apoptosis. This study demonstrated that S. acmella Murr. may exert its protective effects against ROS through SOD2 and SIRT3 signaling pathways in dexamethasone-induced neurotoxicity. S. acmella Murr. may be a candidate therapy for neuroprotection.
Asunto(s)
Asteraceae , Fármacos Neuroprotectores , Antioxidantes/farmacología , Asteraceae/química , Muerte Celular , Supervivencia Celular , Humanos , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/uso terapéutico , Especies Reactivas de OxígenoRESUMEN
Chronic stress is a risk factor for the development of psychiatric illnesses through impairment of the ability to appropriately regulate physiological and behavioral responses, but the molecular events that lead to damage of hippocampal neurons remain unclear. The medicinal herb Spilanthes acmella Murr. has been used as a traditional medicine for various diseases and its extracts exhibit antioxidant activity. The present study explored the molecular signals of mitochondrial dynamics and investigated the beneficial effects of S. acmella Murr. An ethyl acetate extract of this plant was used to assess mitochondrial dynamics in response to chronic restraint stress (CRS) in male Sprague-Dawley rats. The results demonstrated that the S. acmella Murr. extract reduced the expression of mitochondrial fission protein but induced HSP60, MnSOD and ATPsynthase in the hippocampus of the CRS rats. In addition, S. acmella Murr. extract reversed depressive symptoms in the forced swim test. Our findings suggested that S. acmella Murr. extract provides a potential treatment of chronic stress, and that the mechanism is associated with the alleviation of neuronal injury and maintenance of mitochondrial function.
Asunto(s)
Asteraceae/química , Mitocondrias/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Estrés Psicológico/tratamiento farmacológico , Animales , Antioxidantes , Conducta Animal/efectos de los fármacos , Chaperonina 60/biosíntesis , Chaperonina 60/genética , Enfermedad Crónica , Cognición/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/psicología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Plantas Medicinales , Ratas , Ratas Sprague-Dawley , Restricción FísicaRESUMEN
Dexamethasone is an approved steroid for clinical use to activate or suppress cytokines, chemokines, inflammatory enzymes and adhesion molecules. It enters the brain, by-passing the blood brain barrier, and acts through genomic mechanisms. High levels of dexamethasone are able to induce neuronal cell loss, reduce neurogenesis and cause neuronal dysfunction. The exact mechanisms of steroid, especially the dexamethasone contribute to neuronal damage remain unclear. Therefore, the present study explored the mitochondrial dynamics underlying dexamethasone-induced toxicity of human neuroblastoma SH-SY5Y cells. Neuronal cells treatment with the dexamethasone resulted in a marked decrease in cell proliferation. Dexamethasone-induced neurotoxicity also caused upregulation of mitochondrial fusion and cleaved caspase-3 proteins expression. Mitochondria fusion was found in large proportions of dexamethasone-treated cells. These results suggest that dexamethasone-induced hyperfused mitochondrial structures are associated with a caspase-dependent death process in dexamethasone-induced neurotoxicity. These findings point to the high dosage of dexamethasone as being neurotoxic through impairment of mitochondrial dynamics.
Asunto(s)
Dexametasona/toxicidad , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Neuronas/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dinaminas , GTP Fosfohidrolasas/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia ArribaRESUMEN
OBJECTIVE: To investigate protective effects of Spilanthes acmella (S. acmella) Murr. extracts against pesticide-induced neuronal cells death and to elucidate the underlying molecular mechanism in dopaminergic (SH-SY5Y) cells lines. METHODS: Cell viability of SH-SY5Y cells was studied by treating the cells with various concentration of pirimicarb for 24 h. Neuroprotective effect of S. acmella Murr. extracts was investigated by adding the plant extracts to the medium for 24 h prior to the incubation with 100 µM H2O2 or with pirimicarb for 24 h. Control-untreated cells were incubated with the culture medium. Cell viability was measured by MTT assay, calpain and calpastatin expressions were analyzed by Western blotting and immunocytochemistry. RESULTS: Pretreatment of SH-SY5Y cells with S. acmella Murr. extracts (1 µg/mL) for 24 h significantly increased the dopaminergic neurons in pirimicarb-induced neurotoxicity. In addition, pretreatment with the S. acmella Murr. extracts led to decreased calpain but increased calpastatin protein levels. CONCLUSION: S. acmella Murr. extracts exerted neuroprotective effect, via an alteration of calcium homeostasis, against pirimicarb induced neurotoxicity. The S. acmella Murr. might be a potential natural candidate with neuroprotective activity.
RESUMEN
Methamphetamine (METH) is an abused psychostimulant drug that can cause neurotoxicity to dopaminergic cells. It has been demonstrated that METH can induce caspase- and calpain-dependent death cascades. The purpose of the present study was to investigate the functional role of calpastatin, a specific endogenous calpain inhibitor protein, on caspase and calpain activation in METH-induced degeneration in neuroblastoma SH-SY5Y cell cultures. In this study, we found that METH significantly decreased cell viability, tyrosine hydroxylase phosphorylation and calpastatin levels. Supplementation of cells with exogenous calpastatin was able to reverse the toxic effect of METH on reduction in cell viability and tyrosine hydroxylase phosphorylation. METH also significantly increased calpain levels, the formation of calpain-specific breakdown products and cleaved caspase-3 levels; once again, these effects were diminished by pretreating the cells with calpastatin. These data suggest the contribution of calpastatin as a potential regulatory factor for calpain- and caspase-dependent death processes.