Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 88: 153556, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33958276

RESUMEN

BACKGROUND: During the last three decades systemic fungal infections associated to immunosuppressive therapies have become a serious healthcare problem. Clinical development of new antifungals is an urgent requirement. Since fungal but not mammalian cells are encased in a carbohydrate-containing cell wall, which is required for the growth and viability of fungi, the inhibition of cell wall synthesizing machinery, such as ß(1,3)-D-glucan synthases (GS) and chitin synthases (CS) that catalyze the synthesis of ß(1-3)-D-glucan and chitin, respectively, represent an ideal mode of action of antifungal agents. Although the echinocandins anidulafungin, caspofungin and micafungin are clinically well-established GS inhibitors for the treatment of invasive fungal infections, much effort must still be made to identify inhibitors of other enzymes and processes involved in the synthesis of the fungal cell wall. PURPOSE: Since natural products (NPs) have been the source of several antifungals in clinical use and also have provided important scaffolds for the development of semisynthetic analogues, this review was devoted to investigate the advances made to date in the discovery of NPs from plants that showed capacity of inhibiting cell wall synthesis targets. The chemical characterization, specific target, discovery process, along with the stage of development are provided here. METHODS: An extensive systematic search for NPs against the cell wall was performed considering all the articles published until the end of 2020 through the following scientific databases: NCBI PubMed, Scopus and Google Scholar and using the combination of the terms "natural antifungals" and "plant extracts" with "fungal cell wall". RESULTS: The first part of this review introduces the state of the art of the structure and biosynthesis of the fungal cell wall and considers exclusively those naturally produced GS antifungals that have given rise to both existing semisynthetic approved drugs and those derivatives currently in clinical trials. According to their chemical structure, natural GS inhibitors can be classified as 1) cyclic lipopeptides, 2) glycolipids and 3) acidic terpenoids. We also included nikkomycins and polyoxins, NPs that inhibit the CS, which have traditionally been considered good candidates for antifungal drug development but have finally been discarded after enduring unsuccessful clinical trials. Finally, the review focuses in the most recent findings about the growing field of plant-derived molecules and extracts that exhibit activity against the fungal cell wall. Thus, this search yielded sixteen articles, nine of which deal with pure compounds and seven with plant extracts or fractions with proven activity against the fungal cell wall. Regarding the mechanism of action, seven (44%) produced GS inhibition while five (31%) inhibited CS. Some of them (56%) interfered with other components of the cell wall. Most of the analyzed articles refer to tests carried out in vitro and therefore are in early stages of development. CONCLUSION: This report delivers an overview about both existing natural antifungals targeting GS and CS activities and their mechanisms of action. It also presents recent discoveries on natural products that may be used as starting points for the development of potential selective and non-toxic antifungal drugs.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Productos Biológicos/farmacología , Pared Celular/efectos de los fármacos , Hongos/citología , Caspofungina/farmacología , Pared Celular/química , Pared Celular/metabolismo , Quitina/biosíntesis , Equinocandinas/farmacocinética , Hongos/efectos de los fármacos , Glucanos/biosíntesis , Glucosiltransferasas/metabolismo , Humanos , Micosis/tratamiento farmacológico
2.
Rev. bras. farmacogn ; 29(5): 686-688, Sept.-Oct. 2019. tab
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1057836

RESUMEN

Abstract One of the main problems that fruit health goes through in recent years is the difficult eradication of their fungal pathogens after harvesting. This concern to the whole world because it represents huge losses of production, fruit export restrictions and consumers distrust. One of the alternatives to solve this problem could be the exploration of plants and their active compounds, which have proven to be antifungal against human pathogens, but now applied to the treatment of fruits health. In this work, eighteen plant species that grow in Argentina were evaluated against four phytopathogenic fungi that greatly affect the postharvest stage of fruits commercially important to our country. All the species studied were at least active against one fungus of the panel, while three of them displayed high antifungal properties inhibiting the growth of selected pathogens. In addition, bio-guided fractionation of these most active extracts, led to the isolation of some compounds which proved to be responsible for their antifungal activity. Although they are known compounds and were previously isolated from other natural sources, this is the first time that they are evaluated for their phytopathogenic activities against this panel of fungi.

3.
Phytomedicine ; 60: 152884, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30922815

RESUMEN

BACKGROUND: Phytolacca tetramera is an endemic plant from Argentina that is currently at serious risk because its environment is subjected to a high anthropic impact. A previous study has shown that berry extracts obtained from this plant display antifungal activity against multiple human-pathogenic fungi when tested with a non-standardized method. Further evidences of the antifungal properties of other parts of the plant and studies of mechanism of antifungal action of the antifungal chemically characterized extracts are required. PURPOSE: This study aimed to gain further evidence of the antifungal activity of P. tetramera berry, leaf and root extracts in order to find the most active extract to be developed as an Herbal Medicinal Antifungal Product. The medicinal usefulness of P. tetramera extracts as antifungal agents will serve as an important support to create concience and carry out actions tending to the preservation of this threatened species and its environment. MATERIALS AND METHODS: Chemical analysis of all P. tetramera extracts, including quantitation of selected markers, was performed through UHPLC-ESI-MS/MS and UPLC-ESI-MS techniques according to the European Medicines Agency (EMA). The antifungal activity of the quantified extracts was tested with the standardized CLSI microbroth dilution method against Candida spp. Antifungal mechanisms of the most active extract were studied by examination of morphological changes by phase-contrast and fluorescence microscopies and both, cellular and enzymatic assays targeting either the fungal membrane or the cell wall. RESULTS: The antifungal activity of twelve P. tetramera extracts was tested against Candida albicans and Candida glabrata. The dichloromethane extract from berries (PtDEb) showed the best activity. Phytolaccagenin (PhytG) and phytolaccoside B (PhytB) were selected as the main active markers for the antifungal P. tetramera extracts. The quantitation of these active markers in all extracts showed that PtDEb possessed the highest amount of PhytG and PhytB. Finally, studies on the mechanism of antifungal action showed that the most active PtDEb extract produces morphological changes compatible with a damage of the cell wall and/or the plasma membrane. Cellular and enzymatic assays showed that PtDEb would not damage the fungal cell wall by itself, but would alter the plasma membrane. In agreement, PtDEb was found to bind to ergosterol, the main sterol of the fungal plasma membrane. CONCLUSION: Studies of the anti-Candida activity of P. tetramera extracts led to the selection of PtDEb as the most suitable extract, confirming the antifungal properties of the threatened species P. tetramera. The new data give a valuable reason for the definitive protection of this sp. and its natural environment thus allowing further studies for the future development of an Herbal Medicinal Antifungal Product.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida glabrata/efectos de los fármacos , Ácido Oleanólico/análogos & derivados , Phytolacca/química , Extractos Vegetales/farmacología , Saponinas/farmacología , Antifúngicos/química , Argentina , Ergosterol/metabolismo , Frutas/química , Humanos , Cloruro de Metileno , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Raíces de Plantas/química , Plantas Medicinales , Saponinas/química , Espectrometría de Masas en Tándem
4.
Phytomedicine ; 54: 291-301, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30668380

RESUMEN

BACKGROUND: In our previous study the synergism of four combinations of Zuccagnia punctata (ZpE) and Larrea nitida (LnE) exudates with the reliable statistical-based MixLow method was assessed, and the markers of the most anti-C. albicans synergistic ZpE-LnE bi-herbal combination were quantified according to European Medicines Agency (EMA). PURPOSE: To study the mechanisms of action as well as the cytotoxic properties of the ZpE-LnE most synergistic combination found in the previous work. MATERIALS AND METHODS: Minimum Fungicidal Concentration (MFC) and rate of killing of ZpE-LnE were assessed with the microbroth dilution and the time-kill assays respectively. Morphological alterations were observed with both confocal and fluorescence microscopy on the yeast Schizosaccharomyces pombe. The ergosterol exogenous assay, the quantification of ergosterol, the sorbitol as well as glucan synthase (GS) and chitin synthase (ChS) assays were used to detect the effects on the fungal membrane and cell wall respectively. The capacity of ZpE-LnE of inhibiting Candida virulence factors was assessed with previously reported methods. The effect of ZpE-LnE and of ZpE or LnE alone on cell viability was determined on human hepatoma cells line Huh7. RESULTS: ZpE-Ln E was fungicidal killing C. albicans in a shorter time than amphotericin B and produced malformations in S. pombe cells. ZpE-LnE showed to bind to ergosterol but not to inhibit any step of the ergosterol biosynthesis. ZpE-LnE showed a low or moderate capacity of inhibiting GS and ChS. Regarding inhibition of virulence factors, ZpE-LnE significantly decreased the capacity of adhesion to eukaryotic buccal epithelial cells (BECs), did not inhibit the germ tube formation and inhibited the secretion of phospholipases and proteinases but not of haemolysins. ZpE-LnE demonstrated very low toxicity on Huh7 cells, much lower than that each extract alone. CONCLUSION: The fungicidal properties of ZpE-LnE against C. albicans, its dual mechanism of action targeting the fungal membrane's ergosterol as well as the cell wall, its capacity of inhibiting several important virulence factors added to its low toxicity, make ZpE-LnE a good candidate for the development of a new antifungal bi-Herbal Medicinal Product.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Fabaceae/química , Larrea/química , Extractos Vegetales/farmacología , Anfotericina B/farmacología , Ergosterol/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Plantas Medicinales
5.
Phytomedicine ; 37: 14-26, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29174600

RESUMEN

BACKGROUND: Biofilms contribute to the pathogenesis of many chronic and difficult-to eradicate infections whose treatment is complicated due to the intrinsic resistance to conventional antibiotics. As a consequence, there is an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections. The combination therapy comprising an antimicrobial drug with a low molecular weight (MW) natural product and an antimicrobial drug (antifungal or antibacterial) appeared as a good alternative to eradicate biofilms. PURPOSE: The aims of this review were to perform a literature search on the different natural products that have showed the ability of potentiating the antibiofilm capacity of antimicrobial drugs, to analyze which are the antimicrobial drugs most used in combination, and to have a look on the microbial species most used to prepare biofilms. RESULTS: Seventeen papers, nine on combinations against antifungal biofilms and eight against antibacterial biofilms were collected. Within the text, the following topics have been developed: breaf history of the discovery of biofilms; stages in the development of a biofilm; the most used methodologies to assess antibiofilm-activity; the natural products with capacity of eradicating biofilms when acting alone; the combinations of low MW natural products with antibiotics or antifungal drugs as a strategy for eradicating microbial biofilms and a list of the low MW natural products that potentiate the inhibition capacity of antifungal and antibacterial drugs against biofilms. CONCLUSIONS AND PERSPECTIVES: Regarding combinations against antifungal biofilms, eight over the nine collected works were carried out with in vitro studies while only one was performed with in vivo assays by using Caenorhabditis elegans nematode. All studies use biofilms of the Candida genus. A 67% of the potentiators were monoterpenes and sesquiterpenes and six over the nine works used FCZ as the antifungal drug. The activity of AmpB and Caspo was enhanced in one and two works respectively. Regarding combinations against bacterial biofilms, in vitro studies were performed in all works by using several different methods of higher variety than the used against fungal biofilms. Biofilms of both the gram (+) and gram (-) bacteria were prepared, although biofilm of Staphylococcus spp. were the most used in the collected works. Among the discovered potentiators of antibacterial drugs, 75% were terpenes, including mono, di- and triterpenes, and, among the atibacterial drugs, several structurally diverse types were used in the combinations: aminoglycosides, ß-lactams, glucopeptides and fluoroquinolones. The potentiating capacity of natural products, mainly terpenes, on the antibiofilm effect of antimicrobial drugs opens a wide range of possibilities for the combination antimicrobial therapy. More in vivo studies on combinations of natural products with antimicrobial drugs acting against biofilms are highly required to cope the difficult to treat biofilm-associated infections.


Asunto(s)
Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Productos Biológicos/farmacología , Hongos/efectos de los fármacos , Animales , Antibacterianos/farmacología , Antifúngicos/farmacología , Hongos/fisiología , Pruebas de Sensibilidad Microbiana
6.
Phytomedicine ; 22(6): 666-78, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26055132

RESUMEN

BACKGROUND: Zuccagnia punctata Cav. (Fabaceae) and Larrea nitida Cav. (Zygophyllaceae) are indistinctly or jointly used in traditional medicine for the treatment of fungal-related infections. Although their dichloromethane (DCM) extract have demonstrated moderate antifungal activities when tested on their own, antifungal properties of combinations of both plants have not been assessed previously. PURPOSE: The aim of this study was to establish with statistical rigor whether Z. punctata (ZpE) and L. nitida DCM extract (LnE) interact synergistically against the clinically important fungi Candida albicans and Candida glabrata and to characterize the most synergistic combinations. STUDY DESIGN: For synergism assessment, the statistical-based Boik's design was applied. Eight ZpE-LnE fixed-ratio mixtures were prepared from four different months of 1 year and tested against Candida strains. Lϕ (Loewe index) of each mixture at different fractions affected (ϕ) allowed for the finding of the most synergistic combinations, which were characterized by HPLC fingerprint and by the quantitation of the selected marker compounds. METHODS: Lϕ and confidence intervals were determined in vitro with the MixLow method, once the estimated parameters from the dose-response curves of independent extracts and mixtures, were obtained. Markers (four flavonoids for ZpE and three lignans for LnE) were quantified in each extract and their combinations, with a valid HPLC-UV method. The 3D-HPLC profiles of the most synergistic mixtures were obtained by HPLC-DAD. RESULTS: Three over four IC50ZpE/IC50LnE fixed-ratio mixtures displayed synergistic interactions at effect levels ϕ > 0.5 against C. albicans. The dosis of the most synergistic (Lϕ = 0.62) mixture was 65.96 µg/ml (ZpE = 28%; LnE = 72%) containing 8 and 36% of flavonoids and lignans respectively. On the other hand, one over four IC50ZpE/IC50LnE mixtures displays synergistic interactions at ϕ > 0.5 against C. glabrata. The dosis of the most synergistic (Lϕ = 0.67) mixture was 168.23 µg/ml (ZpE = 27%; LnE = 73%) with 9.7 and 31.6% of flavonoids and lignans respectively. CONCLUSIONS: Studies with the statistical-based MixLow method, allowed for the finding of the most ZpE-LnE synergistic mixtures, giving support to a proper joint use of both antifungal herbs in traditional medicine.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida glabrata/efectos de los fármacos , Fabaceae/química , Larrea/química , Extractos Vegetales/farmacología , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Componentes Aéreos de las Plantas/química , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA