Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Comput Biol Chem ; 106: 107912, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37454399

RESUMEN

COVID-19 shook the world during the pandemic, where the climax it reached was vaccine manufacturing at an unfathomable pace. Alternative promising solutions to prevent infection from SARS-CoV-2 and its variants will remain crucial in the years to come. Due to its key role in viral replication, the major protease (Mpro) enzyme of SARS-CoV-2 can be an attractive therapeutic target. In the present work, natural terpenoids from mangrove medicinal plant Xylocarpus moluccensis (Lam.) M. Roem. were screened using computational methods for inhibition of Mpro protein. Out of sixty-seven terpenoids, Angolensic acid methyl ester, Moluccensin V, Thaixylomolin F, Godavarin J, and Xylomexicanolide A were shortlisted based on their docking scores and interaction affinities (- 13.502 to - 15.52 kcal/mol). The efficacy was validated by the 100 ns molecular dynamics study. Lead terpenoids were within the acceptable range of RMSD and RMSF with a mean value of 2.5 Å and 1.5 Å, respectively indicating that they bound tightly within Mpro and there was minimal fluctuation and stability of Mpro upon binding of these terpenoids. The utmost favorable binding strengths as calculated by MM-GBSA, were of Angolensic acid methyl ester and Moluccensin V with binding free energies (ΔGbind) of - 39.084, and - 43.160 kcal/mol, respectively. The terpenoids showed no violations in terms of Drug Likeliness and ADMET predictions. Overall, the findings indicate that Angolensic acid methyl ester and Moluccensin V are effective terpenoids having strong binding interaction with Mpro protein, which must be tested in vitro as an effective anti-SARS-CoV-2 drug.


Asunto(s)
Antivirales , Magnoliopsida , Terpenos , Simulación por Computador , Magnoliopsida/química , Terpenos/química , SARS-CoV-2 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Tratamiento Farmacológico de COVID-19 , Antivirales/química , Termodinámica
2.
Comput Biol Med ; 147: 105679, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35667152

RESUMEN

Severe acute respiratory syndrome coronavirus 2 was originally identified in Wuhan city of China in December 2019 and it spread rapidly throughout the globe, causing a threat to human life. Since targeted therapies are deficient, scientists all over the world have an opportunity to develop novel drug therapies to combat COVID-19. After the declaration of a global medical emergency, it was established that the Food and Drug Administration (FDA) could permit the use of emergency testing, treatments, and vaccines to decrease suffering, and loss of life, and restore the nation's health and security. The FDA has approved the use of remdesivir and its analogs as an antiviral medication, to treat COVID-19. The primary protease of SARS-CoV-2, which has the potential to regulate coronavirus proliferation, has been a viable target for the discovery of medicines against SARS-CoV-2. The present research deals with the in silico technique to screen phytocompounds from a traditional medicinal plant, Bauhinia variegata for potential inhibitors of the SARS-CoV-2 main protease. Dried leaves of the plant B. variegata were used to prepare aqueous and methanol extract and the constituents were analyzed using the GC-MS technique. A total of 57 compounds were retrieved from the aqueous and methanol extract analysis. Among these, three lead compounds (2,5 dimethyl 1-H Pyrrole, 2,3 diphenyl cyclopropyl methyl phenyl sulphoxide, and Benzonitrile m phenethyl) were shown to have the highest binding affinity (-5.719 to -5.580 kcal/mol) towards SARS-CoV-2 Mpro. The post MD simulation results also revealed the favorable confirmation and stability of the selected lead compounds with Mpro as per trajectory analysis. The Prime MM/GBSA binding free energy supports this finding, the top lead compound 2,3 diphenyl cyclopropyl methyl phenyl sulphoxide showed high binding free energy (-64.377 ± 5.24 kcal/mol) towards Mpro which reflects the binding stability of the molecule with Mpro. The binding free energy of the complexes was strongly influenced by His, Gln, and Glu residues. All of the molecules chosen are found to have strong pharmacokinetic characteristics and show drug-likeness properties. The lead compounds present acute toxicity (LD50) values ranging from 670 mg/kg to 2500 mg/kg; with toxicity classifications of 4 and 5 classes. Thus, these compounds could behave as probable lead candidates for treatment against SARS-CoV-2. However further in vitro and in vivo studies are required for the development of medication against SARS-CoV-2.


Asunto(s)
Bauhinia , Tratamiento Farmacológico de COVID-19 , Bauhinia/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Humanos , Metanol , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2 , Proteínas no Estructurales Virales/química
3.
J Biomol Struct Dyn ; 40(1): 154-165, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32838699

RESUMEN

The interest in naturally occurring essential oils from medicinal plants has increased extremely over the last decade markedly because they possess antimicrobial and antioxidant protective properties against different chronic diseases. Extensive survival of drug-resistant infectious bacteria depends on quorum sensing (QS) signaling network which raises the need for alternative antibacterial compounds. The aim of this study was to examine the phytochemical compounds of patchouli essential oil (PEO) and to assess its antioxidant activity. Antioxidant studies estimated by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method showed that the PEO has effective antioxidant activity (IC50 19.53 µg/mL). QS inhibitory activity of PEO was examined by employing the biosensor strain, Chromobacterium violaceum CV12472. At sub-lethal concentrations, PEO potentially reduced the QS regulated violacein synthesis in CV12472 without inhibiting its cell proliferation. Moreover, it also effectively reduced the production of some QS regulated virulence factors and biofilm development in P. aeruginosa PAO1 without hindering its growth. Phytochemical analysis of PEO was done by GC/MS technique. Molecular docking of PEO major compounds with QS (LasR and FabI) and biofilm regulator proteins (MvfR and Sialidase) of PAO1 was evaluated. These phytocompounds showed potential hydrogen binding interactions with these proteins. The overall results, in vitro and in silico, suggest that PEO could be applied as biocontrol agent against antibiotic resistance pathogens. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Aceites Volátiles , Pogostemon , Antibacterianos/farmacología , Antioxidantes/farmacología , Biopelículas , Simulación del Acoplamiento Molecular , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Percepción de Quorum , Factores de Virulencia
4.
Bioinform Biol Insights ; 15: 11779322211027403, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248355

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has increased the importance of computational tools to design a drug or vaccine in reduced time with minimum risk. Earlier studies have emphasized the important role of RNA-dependent RNA polymerase (RdRp) in SARS-CoV-2 replication as a potential drug target. In our study, comprehensive computational approaches were applied to identify potential compounds targeting RdRp of SARS-CoV-2. To study the binding affinity and stability of the phytocompounds from Phyllanthus emblica and Aegel marmelos within the defined binding site of SARS-CoV-2 RdRp, they were subjected to molecular docking, 100 ns molecular dynamics (MD) simulation followed by post-simulation analysis. Furthermore, to assess the importance of features involved in the strong binding affinity, molecular field-based similarity analysis was performed. Based on comparative molecular docking and simulation studies of the selected phytocompounds with SARS-CoV-2 RdRp revealed that EBDGp possesses a stronger binding affinity (-23.32 kcal/mol) and stability than other phytocompounds and reference compound, Remdesivir (-19.36 kcal/mol). Molecular field-based similarity profiling has supported our study in the validation of the importance of the presence of hydroxyl groups in EBDGp, involved in increasing its binding affinity toward SARS-CoV-2 RdRp. Molecular docking and dynamic simulation results confirmed that EBDGp has better inhibitory potential than Remdesivir and can be an effective novel drug for SARS-CoV-2 RdRp. Furthermore, binding free energy calculations confirmed the higher stability of the SARS-CoV-2 RdRp-EBDGp complex. These results suggest that the EBDGp compound may emerge as a promising drug against SARS-CoV-2 and hence requires further experimental validation.

5.
Biomed Pharmacother ; 91: 880-889, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28511341

RESUMEN

Myocardial infarction (MI) is a leading major health problem with increased morbidity and mortality worldwide. The present study investigates isoproterenol (ISO) induced MI and the beneficial role of Aegle marmelos fruit extract (AMFE) in rats. Our results indicated the significant augmentation of plasma nitric oxide (NOx) levels, C-reactive protein (CRP), homocysteine, apolipoprotein B (apo-B), cardiac tissue lipid peroxidation and liver 3-hydroxy-3 methyl glutaryl CoA (HMG-CoA) reductase activity in ISO treated rats (85mg/kg b.wt) with a concomitant decrease in plasma apolipoprotein A1 (apo-A), lipase activity, paraoxonase-1 activity and cardiac tissue taurine levels when compared with controls. However, pretreatment of ISO administered rats with AMFE (150mg/kg b.wt/day for 45 days) markedly brought the observed alterations toward near normal level indicating its protective role against MI. Further, we have extended our studies to study the interaction of important phytocompounds, marmesin, marmin, umbelliferone and impertonin, present in AMFE with key enzymes, HMG-CoA reductase, iNOS, lipoprotein lipase and paraoxonase using AutoDock4. Molecular docking analysis indicated that HMG-CoA reductase, inducible nitric oxide synthase (iNOS) and lipoprotein lipase formed a strong enzyme ligand complex with impertonin. While the marmesin showed strong interaction with paraoxonase enzyme. In conclusion, our results suggest that AMFE acts as a strong protective agent against ISO-induced MI, and the bioactive compounds are responsible for this protective action which is confirmed by molecular docking studies.


Asunto(s)
Aegle/química , Cardiotónicos/uso terapéutico , Frutas/química , Simulación del Acoplamiento Molecular , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico , Fitoquímicos/uso terapéutico , Extractos Vegetales/uso terapéutico , Animales , Cardiotónicos/química , Cardiotónicos/farmacología , Isoproterenol , Masculino , Infarto del Miocardio/sangre , Infarto del Miocardio/enzimología , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas Wistar
6.
Mini Rev Med Chem ; 10(5): 372-87, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20370702

RESUMEN

Curcumin is a natural polyphenol derived from the plant Curcuma longa, commonly called turmeric. Extensive research over past 50 years has indicated that this polyphenol is highly pleiotropic molecule capable of preventing and treating various cancers. The anticancer potential of Curcumin is severely affected by its limited systemic and target tissue bioavailability and rapid metabolism. In the present review article, we provide a summarized account of different drug delivery systems employed for tackling the problem of cucumin's bioavailability such as liposomes, phospholipid complexes and nanoparticles. Concomitantly we have reviewed the large volume of literature reports describing structural modifications of Curcumin and the anticancer potential of its analogs. Some of the difluorocurcumin analogs allowing longer circulation times and preferential accumulation in the pancreas seem to offer promising leads for conducting first in-depth animal studies and subsequently clinical trials for the use of these analogs for prevention of tumor progression and/or treatments of human malignancies.


Asunto(s)
Antineoplásicos/química , Curcumina/química , Animales , Anticarcinógenos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Curcuma/química , Curcumina/administración & dosificación , Curcumina/farmacocinética , Sistemas de Liberación de Medicamentos , Humanos , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA