Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(3): e2205044120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36630448

RESUMEN

Although hydrogen sulfide (H2S) is an endogenous signaling molecule with antioxidant properties, it is also cytotoxic by potently inhibiting cytochrome c oxidase and mitochondrial respiration. Paradoxically, the primary route of H2S detoxification is thought to occur inside the mitochondrial matrix via a series of relatively slow enzymatic reactions that are unlikely to compete with its rapid inhibition of cytochrome c oxidase. Therefore, alternative or complementary cellular mechanisms of H2S detoxification are predicted to exist. Here, superoxide dismutase [Cu-Zn] (SOD1) is shown to be an efficient H2S oxidase that has an essential role in limiting cytotoxicity from endogenous and exogenous sulfide. Decreased SOD1 expression resulted in increased sensitivity to H2S toxicity in yeast and human cells, while increased SOD1 expression enhanced tolerance to H2S. SOD1 rapidly converted H2S to sulfate under conditions of limiting sulfide; however, when sulfide was in molar excess, SOD1 catalyzed the formation of per- and polysulfides, which induce cellular thiol oxidation. Furthermore, in SOD1-deficient cells, elevated levels of reactive oxygen species catalyzed sulfide oxidation to per- and polysulfides. These data reveal that a fundamental function of SOD1 is to regulate H2S and related reactive sulfur species.


Asunto(s)
Complejo IV de Transporte de Electrones , Sulfuro de Hidrógeno , Superóxido Dismutasa-1 , Humanos , Complejo IV de Transporte de Electrones/metabolismo , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/toxicidad , Sulfuros/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Clin Cancer Res ; 19(6): 1340-6, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23271799

RESUMEN

Numerous reports have described Toll-like receptor (TLR) expression in the tumor microenvironment as it relates to cancer progression, as well as their involvement in inflammation. While TLRs mediate immune surveillance, clinical studies have associated TLR expression in the tumor with poor patient survival, indicating that TLR expression may affect cancer treatment and survival. This review will examine mechanisms in which TLR activation upregulates protumorigenic pathways, including the induction of inducible nitric oxide synthase (iNOS2) and COX2, which in turn increase TLR expression and promote a feed-forward loop leading to tumor progression and the development of more aggressive tumor phenotypes. These propagating loops involve cancer cell, stroma, and/or immune cell TLR expression. Because of abundant TLR expression in many human tumors, several TLR agonists are now in clinical and preclinical trials and some have shown enhanced efficacy when used as adjuvant with radiation, chemotherapy, or cancer vaccines. These findings suggest that TLR expression influences cancer biology and therapeutic response, which may involve specific interactions within the tumor microenvironment, including mediators of inflammation such as nitric oxide and the arachidonic acid signaling pathways.


Asunto(s)
Ciclooxigenasa 2/genética , Neoplasias/genética , Óxido Nítrico Sintasa de Tipo II/genética , Receptores Toll-Like/genética , Ácido Araquidónico/genética , Ácido Araquidónico/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Pronóstico , Transducción de Señal , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA