Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Heart Lung Transplant ; 40(3): 183-192, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33277170

RESUMEN

BACKGROUND: Maintenance of cell viability during cold storage is a key issue in organ transplantation. Methane (CH4) bioactivity has recently been recognized in ischemia/reperfusion conditions; we therefore hypothesized that cold storage in CH4-enriched preservation solution can provide an increased defense against organ dysfunction during experimental heart transplantation (HTX). METHODS: The hearts of donor Lewis rats were stored for 60 minutes in cold histidine-tryptophan-ketoglutarate (Custodiol [CS]) or CH4-saturated CS solution (CS-CH4) (n = 12 each). Standard heterotopic HTX was performed, and 60 minutes later, the left ventricular (LV) pressure-volume relationships LV systolic pressure (LVSP), systolic pressure increment (dP/dtmax), diastolic pressure decrement, and coronary blood flow (CBF) were measured. Tissue samples were taken to detect proinflammatory parameters, structural damage (by light microscopy), endoplasmic reticulum (ER) stress, and apoptosis markers (CCAAT/enhancer binding protein [C/EBP] homologous protein, GRP78, glycogen synthase kinase-3ß, very low-density lipoprotein receptor, caspase 3 and 9, B-cell lymphoma 2, and bcl-2-like protein 4), whereas mitochondrial functional changes were analyzed by high-resolution respirometry. RESULTS: LVSP and dP/dtmax increased significantly at the largest pre-load volumes in CS-CH4 grafts as compared with the CS group (114.5 ± 16.6 mm Hg vs 82.8 ± 4.6 mm Hg and 3,133 ± 430 mm Hg/s vs 1,739 ± 169 mm Hg/s, respectively); the diastolic function and CBF (2.4 ± 0.4 ml/min/g vs 1.3 ± 0.3 ml/min/g) also improved. Mitochondrial oxidative phosphorylation capacity was more preserved (58.5 ± 9.4 pmol/s/ml vs 27.7 ± 6.6 pmol/s/ml), and cytochrome c release was reduced in CS-CH4 storage. Signs of HTX-caused myocardial damage, level of ER stress, and the transcription of proapoptotic proteins were significantly lower in CS-CH4 grafts. CONCLUSION: The addition of CH4 during 1 hour of cold storage improved early in vitro graft function and reduced mitochondrial dysfunction and activation of inflammation. Evidence shows that CH4 reduced ER stress-linked proapoptotic signaling.


Asunto(s)
Trasplante de Corazón/métodos , Metano/administración & dosificación , Disfunción Primaria del Injerto/prevención & control , Animales , Suplementos Dietéticos , Modelos Animales de Enfermedad , Masculino , Preservación de Órganos , Disfunción Primaria del Injerto/patología , Disfunción Primaria del Injerto/fisiopatología , Ratas , Ratas Endogámicas Lew
2.
Am J Physiol Cell Physiol ; 304(2): C207-14, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23174561

RESUMEN

Previous studies demonstrated methane generation in aerobic cells. Our aims were to investigate the methanogenic features of sodium azide (NaN(3))-induced chemical hypoxia in the whole animal and to study the effects of l-α-glycerylphosphorylcholine (GPC) on endogenous methane production and inflammatory events as indicators of a NaN(3)-elicited mitochondrial dysfunction. Group 1 of Sprague-Dawley rats served as the sham-operated control; in group 2, the animals were treated with NaN(3) (14 mg·kg(-1)·day(-1) sc) for 8 days. In group 3, the chronic NaN(3) administration was supplemented with daily oral GPC treatment. Group 4 served as an oral antibiotic-treated control (rifaximin, 10 mg·kg(-1)·day(-1)) targeting the intestinal bacterial flora, while group 5 received this antibiotic in parallel with NaN(3) treatment. The whole body methane production of the rats was measured by means of a newly developed method based on photoacoustic spectroscopy, the microcirculation of the liver was observed by intravital videomicroscopy, and structural changes were assessed via in vivo fluorescent confocal laser-scanning microscopy. NaN(3) administration induced a significant inflammatory reaction and methane generation independently of the methanogenic flora. After 8 days, the hepatic microcirculation was disturbed and the ATP content was decreased, without major structural damage. Methane generation, the hepatic microcirculatory changes, and the increased tissue myeloperoxidase and xanthine oxidoreductase activities were reduced by GPC treatment. In conclusion, the results suggest that methane production in mammals is connected with hypoxic events associated with a mitochondrial dysfunction. GPC is protective against the inflammatory consequences of a hypoxic reaction that might involve cellular or mitochondrial methane generation.


Asunto(s)
Inhibidores Enzimáticos/efectos adversos , Metano/biosíntesis , Azida Sódica/efectos adversos , Adenosina Trifosfato/análisis , Animales , Hipoxia de la Célula , Fármacos Gastrointestinales/farmacología , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Glicerilfosforilcolina/farmacología , Inflamación/inducido químicamente , Inflamación/metabolismo , Circulación Hepática/efectos de los fármacos , Masculino , Microcirculación/efectos de los fármacos , Microscopía Confocal/métodos , Microscopía por Video/métodos , Peroxidasa/análisis , Técnicas Fotoacústicas/métodos , Ratas , Ratas Sprague-Dawley , Rifamicinas/farmacología , Rifaximina , Xantina Deshidrogenasa/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA