Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Pflugers Arch ; 476(3): 365-377, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308122

RESUMEN

To assess the influence of physical training on neuronal activation and hypothalamic expression of vasopressin and oxytocin in spontaneously hypertensive rats (SHR), untrained and trained normotensive rats and SHR were submitted to running until fatigue while internal body and tail temperatures were recorded. Hypothalamic c-Fos expression was evaluated in thermoregulatory centers such as the median preoptic nucleus (MnPO), medial preoptic nucleus (mPOA), paraventricular nucleus of the hypothalamus (PVN), and supraoptic nucleus (SON). The PVN and the SON were also investigated for vasopressin and oxytocin expressions. Although exercise training improved the workload performed by the animals, it was reduced in SHR and followed by increased internal body temperature due to tail vasodilation deficit. Physical training enhanced c-Fos expression in the MnPO, mPOA, and PVN of both strains, and these responses were attenuated in SHR. Vasopressin immunoreactivity in the PVN was also increased by physical training to a lesser extent in SHR. The already-reduced oxytocin expression in the PVN of SHR was increased in response to physical training. Within the SON, neuronal activation and the expressions of vasopressin and oxytocin were reduced by hypertension and unaffected by physical training. The data indicate that physical training counterbalances in part the negative effect of hypertension on hypothalamic neuronal activation elicited by exercise, as well as on the expression of vasopressin and oxytocin. These hypertension features seem to negatively influence the workload performed by SHR due to the hyperthermia derived from the inability of physical training to improve heat dissipation through skin vasodilation.


Asunto(s)
Hipertensión , Carrera , Ratas , Animales , Ratas Endogámicas SHR , Oxitocina/metabolismo , Oxitocina/farmacología , Hipotálamo/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Vasopresinas/metabolismo , Hipertensión/metabolismo , Fatiga
2.
Endocrinology ; 163(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35803590

RESUMEN

Growth hormone (GH) acts in several hypothalamic neuronal populations to modulate metabolism and the autoregulation of GH secretion via negative-feedback loops. However, few studies have investigated whether GH receptor (GHR) expression in specific neuronal populations is required for the homeostatic control of GH secretion and energy homeostasis. In the present study, we investigated the consequences of the specific GHR ablation in GABAergic (VGAT-expressing) or glutamatergic (VGLUT2-expressing) cells. GHR ablation in GABAergic neurons led to increased GH secretion, lean mass, and body growth in male and female mice. VGAT-specific GHR knockout (KO) male mice also showed increased serum insulin-like growth factor-1, hypothalamic Ghrh, and hepatic Igf1 messenger RNA levels. In contrast, normal GH secretion, but reduced lean body mass, was observed in mice carrying GHR ablation in glutamatergic neurons. GHR ablation in GABAergic cells increased weight loss and led to decreased blood glucose levels during food restriction, whereas VGLUT2-specific GHR KO mice showed blunted feeding response to 2-deoxy-D-glucose both in males and females, and increased relative food intake, oxygen consumption, and serum leptin levels in male mice. Of note, VGLUT2-cre female mice, independently of GHR ablation, exhibited a previously unreported phenotype of mild reduction in body weight without further metabolic alterations. The autoregulation of GH secretion via negative-feedback loops requires GHR expression in GABAergic cells. Furthermore, GHR ablation in GABAergic and glutamatergic neuronal populations leads to distinct metabolic alterations. These findings contribute to the understanding of the neuronal populations responsible for mediating the neuroendocrine and metabolic effects of GH.


Asunto(s)
Neuronas GABAérgicas , Receptores de Somatotropina , Animales , Femenino , Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Receptores de Leptina/metabolismo , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo
3.
Endocrinology ; 163(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35789268

RESUMEN

Luteinizing hormone (LH) secretion during the ovarian cycle is governed by fluctuations in circulating estradiol (E2) that oppositely regulate kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) of the hypothalamus. However, how these effects are orchestrated to achieve fertility is unknown. Here, we have tested the hypothesis that AVPV and ARC neurons have different sensitivities to E2 to coordinate changes in LH secretion. Cycling and ovariectomized rats with low and high E2 levels were used. As an index of E2 responsiveness, progesterone receptor (PR) was expressed only in the AVPV of rats with high E2, showing the preovulatory LH surge. On the other hand, kisspeptin neurons in the ARC responded to low E2 levels sufficient to suppress LH release. Notably, the Esr1/Esr2 ratio of gene expression was higher in the ARC than AVPV, regardless of E2 levels. Accordingly, the selective pharmacological activation of estrogen receptor α (ERα) required lower doses to induce PR in the ARC. The activation of ERß, in turn, amplified E2-induced PR expression in the AVPV and the LH surge. Thus, ARC and AVPV neurons are differently responsive to E2. Lower E2 levels activate ERα in the ARC, whereas ERß potentiates the E2 positive feedback in the AVPV, which appears related to the differential Esr1/Esr2 ratio in these 2 brain areas. Our findings provide evidence that the distinct expression of ER isoforms in the AVPV and ARC plays a key role in the control of periodic secretion of LH required for fertility in females.


Asunto(s)
Estradiol , Kisspeptinas , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Estradiol/metabolismo , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Femenino , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Isoformas de Proteínas/metabolismo , Ratas , Receptores de Estrógenos/metabolismo
4.
Brain Res Bull ; 177: 64-72, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34536522

RESUMEN

The paraventricular nucleus of the hypothalamus (PVN) is an important site for autonomic control, which integrates thermoregulation centers and sympathetic outflow to thermoeffector organs. PVN neurons express the neuronal isoform of nitric oxide synthase (nNOS) whose expression is locally upregulated by physical exercise. Thus, the aim of the present study was to evaluate the role of nNOS in the PVN in the exercise-induced hyperthermia. Seven days after surgery, male Wistar rats received bilateral intra-PVN microinjections of the selective nNOS inhibitor Nw-Propyl-L-Arginine (NPLA) or vehicle (saline) and were submitted to an acute progressive exercise session on a treadmill until fatigue. Abdominal and tail skin temperature (Tabd and Ttail, respectively) were measured, and the threshold (Hthr; °C) and sensitivity (Hsen) for heat dissipation calculated. Performance variables were also collected. During the progressive exercise protocol, all animals displayed an increase in the Tabd. However, compared to vehicle group, the microinjection of NPLA in the PVN attenuated the exercise-induced hyperthermia. There was no difference in Ttail or Hthr between NPLA and control rats. In contrast, Hsen was increased in the NPLA group compared to vehicle. In addition, heat storage was lower in NPLA-treated animals. Despite the temperature differences, inhibition of nNOS in the PVN did not affect running performance on the treadmill. These results suggest that nitrergic signaling within the PVN, under nNOS activation, drives the increase of body temperature, being necessary for the proper thermal regulatory mechanisms during progressive exercise-induced hyperthermia.


Asunto(s)
Hipertermia Inducida , Núcleo Hipotalámico Paraventricular , Animales , Hipotálamo/metabolismo , Masculino , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas Wistar
5.
J Neuroendocrinol ; 32(11): e12880, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32627906

RESUMEN

Dopamine from tuberoinfundibular dopaminergic (TIDA) neurones tonically inhibits prolactin (PRL) secretion. Lactational hyperprolactinaemia is associated with a reduced activity of TIDA neurones. However, it remains controversial whether the suckling-induced PRL surge is driven by an additional decrease in dopamine release or by stimulation from a PRL-releasing factor. In the present study, we further investigated the role of dopamine in the PRL response to suckling. Non-lactating (N-Lac), lactating 4 hour apart from pups (Lac), Lac with pups return and suckling (Lac+S), and post-lactating (P-Lac) rats were evaluated. PRL levels were elevated in Lac rats and increased linearly within 30 minutes of suckling in Lac+S rats. During the rise in PRL levels, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the median eminence (ME) and neurointermediate lobe of the pituitary did not differ between Lac+S and Lac rats. However, dopamine and DOPAC were equally decreased in Lac and Lac+S compared to N-Lac and P-Lac rats. Suckling, in turn, reduced phosphorylation of tyrosine hydroxylase in the ME of Lac+S. Domperidone and bromocriptine were used to block and activate pituitary dopamine D2 receptors, respectively. Domperidone increased PRL secretion in both N-Lac and Lac rats, and suckling elicited a robust surge of PRL over the high basal levels in domperidone-treated Lac+S rats. Conversely, bromocriptine blocked the PRL response to suckling. The findings obtained in the present study provide evidence that dopamine synthesis and release are tonically reduced during lactation, whereas dopamine is still functional with respect to inhibiting PRL secretion. However, there appears to be no further reduction in dopamine release associated with the suckling-induced rise in PRL. Instead, the lower dopaminergic tone during lactation appears to be required to sensitise the pituitary to a suckling-induced PRL-releasing factor.


Asunto(s)
Animales Lactantes/fisiología , Dopamina/fisiología , Hipotálamo/fisiología , Lactancia/fisiología , Prolactina/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Bromocriptina/farmacología , Domperidona/farmacología , Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Femenino , Hipotálamo/efectos de los fármacos , Eminencia Media/efectos de los fármacos , Eminencia Media/metabolismo , Adenohipófisis Porción Intermedia/efectos de los fármacos , Adenohipófisis Porción Intermedia/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Ratas , Ratas Wistar , Tirosina 3-Monooxigenasa/metabolismo
6.
J Neuroendocrinol ; 32(11): e12884, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32662600

RESUMEN

The hypothalamic tuberoinfundibular dopaminergic (TIDA) neurones are critical with respect to regulating prolactin secretion from the anterior pituitary. Under most physiological conditions, they are stimulated by prolactin to release dopamine into the median eminence which subsequently suppresses further prolactin secretion from the lactotrophs. During lactation, the TIDA neurones are known to undergo both electrophysiological and neurochemical changes that alleviate this negative-feedback, thus allowing circulating prolactin levels to rise. The present study aimed to determine whether TIDA neurone morphology, most notably spine density, is also modified during lactation. This was achieved by stereotaxically injecting the arcuate nucleus of female, tyrosine hydroxylase-promoter driven Cre-recombinase transgenic rats with Cre-dependent adeno-associated virus-expressing Brainbow. This resulted in the highly specifici transfection of between 10% and 30% of the TIDA neurones, thus allowing the morphologies on multiple individual neurones to be examined in a single hypothalamic slice. The transfected neurones exhibited a range of complex forms, including a diversity of soma and location of axonal origin. Neuronal spine counting showed that the density of somatic, but not dendritic, spines was significantly higher during lactation than at any other reproductive stage. There was also a significant fall in somatic spine density across the oestrous cycle from dioestrus to oestrus. Although the functional characteristics of the additional somatic spines have not been determined, if, as might be expected, they represent an increased excitatory input to the TIDA neurones, this could have important physiological implications by perhaps supporting altered neurotransmitter release at their neuroendocrine terminals. Enhanced excitatory input may, for example, favour the release of the opioid peptide enkephalin rather than dopamine, which is potentially significant because the expression of the peptide is known to increase in the TIDA neurones during lactation and, in contrast to dopamine, it stimulates rather than inhibits prolactin secretion from the pituitary.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Ciclo Estral/fisiología , Hipotálamo/fisiología , Lactancia/fisiología , Plasticidad Neuronal/fisiología , Animales , Núcleo Arqueado del Hipotálamo , Axones/fisiología , Espinas Dendríticas/fisiología , Femenino , Hipotálamo/citología , Neuronas/fisiología , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Ratas , Ratas Long-Evans , Ratas Transgénicas , Tirosina 3-Monooxigenasa/genética
7.
J Neurosci ; 40(22): 4309-4322, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32317389

RESUMEN

Classical studies suggest that growth hormone (GH) secretion is controlled by negative-feedback loops mediated by GH-releasing hormone (GHRH)- or somatostatin-expressing neurons. Catecholamines are known to alter GH secretion and neurons expressing TH are located in several brain areas containing GH-responsive cells. However, whether TH-expressing neurons are required to regulate GH secretion via negative-feedback mechanisms is unknown. In the present study, we showed that between 50% and 90% of TH-expressing neurons in the periventricular, paraventricular, and arcuate hypothalamic nuclei and locus ceruleus of mice exhibited STAT5 phosphorylation (pSTAT5) after an acute GH injection. Ablation of GH receptor (GHR) from TH cells or in the entire brain markedly increased GH pulse secretion and body growth in both male and female mice. In contrast, GHR ablation in cells that express the dopamine transporter (DAT) or dopamine ß-hydroxylase (DBH; marker of noradrenergic/adrenergic cells) did not affect body growth. Nevertheless, less than 50% of TH-expressing neurons in the hypothalamus were found to express DAT. Ablation of GHR in TH cells increased the hypothalamic expression of Ghrh mRNA, although very few GHRH neurons were found to coexpress TH- and GH-induced pSTAT5. In summary, TH neurons that do not express DAT or DBH are required for the autoregulation of GH secretion via a negative-feedback loop. Our findings revealed a critical and previously unidentified group of catecholaminergic interneurons that are apt to sense changes in GH levels and regulate the somatotropic axis in mice.SIGNIFICANCE STATEMENT Textbooks indicate until now that the pulsatile pattern of growth hormone (GH) secretion is primarily controlled by GH-releasing hormone and somatostatin neurons. The regulation of GH secretion relies on the ability of these cells to sense changes in circulating GH levels to adjust pituitary GH secretion within a narrow physiological range. However, our study identifies a specific population of tyrosine hydroxylase-expressing neurons that is critical to autoregulate GH secretion via a negative-feedback loop. The lack of this mechanism in transgenic mice results in aberrant GH secretion and body growth. Since GH plays a key role in cell proliferation, body growth, and metabolism, our findings provide a major advance to understand how the brain regulates the somatotropic axis.


Asunto(s)
Exocitosis , Retroalimentación Fisiológica , Hormona del Crecimiento/metabolismo , Neuronas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Femenino , Hormona Liberadora de Hormona del Crecimiento/genética , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Locus Coeruleus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Somatotropina/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Tirosina 3-Monooxigenasa/genética
8.
Endocrinology ; 161(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32052048

RESUMEN

Hyperprolactinemia causes infertility by suppressing gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion. Because effects of prolactin (PRL) on the hypothalamus usually require estradiol (E2), we investigated the role of E2 in PRL-induced suppression of LH pulses. Ovariectomized (OVX) rats treated with oil or E2 (OVX + E2) received a subcutaneous injection of ovine PRL (oPRL) 30 minutes before serial measurement of LH in the tail blood by enzyme-linked immunosorbent assay. E2 reduced pulsatile LH secretion. oPRL at 1.5 mg/kg further reduced LH pulse frequency in OVX + E2 but had no effect in OVX rats. The higher dose of 6-mg/kg oPRL decreased LH pulse frequency in both OVX and OVX + E2 rats, whereas pulse amplitude and mean LH levels were lowered only in OVX + E2 rats. Kisspeptin immunoreactivity and Kiss1 messenger ribonucleic acid (mRNA) levels were decreased in the arcuate nucleus (ARC) of OVX + E2 rats. oPRL decreased both kisspeptin peptide and gene expression in the ARC of OVX rats but did not alter the already low levels in OVX + E2 rats. In the anteroventral periventricular nucleus, oPRL did not change kisspeptin immunoreactivity and, paradoxically, increased Kiss1 mRNA only in OVX + E2 rats. Moreover, oPRL effectively reduced Gnrh expression regardless of E2 treatment. In this study we used tail-tip blood sampling to determine the acute effect of PRL on LH pulsatility in female rats. Our findings characterize the role of E2 in the PRL modulation of hypothalamic components of the gonadal axis and LH release, demonstrating that E2 potentiates but is not essential for the suppression of pulsatile LH secretion caused by hyperprolactinemia.


Asunto(s)
Estradiol/farmacología , Hipotálamo/efectos de los fármacos , Hormona Luteinizante/sangre , Prolactina/farmacología , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Femenino , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Ratas
9.
Brain Struct Funct ; 224(8): 2775-2786, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31399877

RESUMEN

This study evaluated the hypothalamic neuronal activation during exercise and investigated whether this activation is related to heat storage and exercise duration. Rats were subjected to a treadmill running that was interrupted at three different moments: (1) at the early phase, when minimal heat dissipation occurred due to tail vasoconstriction and the tail skin temperature (Tskin) reached its nadir; (2) at the steady-state phase, when both the Tskin and core body temperature (Tcore) plateaued at a high level (~ 20 min); and (3) at fatigue, when Tcore and Tskin were still elevated. c-Fos expression in the medial and ventromedial preoptic areas (mPOA and vmPOA), median preoptic nucleus (MnPO), paraventricular and supraoptic nucleus (PVN and SON), and septohypothalamic nucleus (SHy) was determined. Exercise increased the expression of c-Fos in all brain areas, but with different activation patterns of activation. c-Fos expression in the SHy and vmPOA was similar in all exercising groups, while in the mPOA, MnPO, and PVN, c-Fos expression gradually increased during exercise. Increased c-Fos in the SON was only evident after 20 min of exercise. Neuronal activation in the mPOA, MnPO, PVN, and SON was positively correlated with both exercise duration and heat storage. Our findings indicate that with the exception of SON, the brain areas analyzed are recruited following small changes in Tcore (~ 0.5 °C), while the SON is recruited only when Tcore reaches higher values (greater than 1.0 °C increase). c-Fos expression in the PVN, mPOA, MnPO, and SON is also influenced by exercise duration, which does not occur in the SHy and vmPOA.


Asunto(s)
Regulación de la Temperatura Corporal , Hipotálamo/fisiología , Actividad Motora , Neuronas/fisiología , Animales , Masculino , Proteínas Proto-Oncogénicas c-fos , Ratas Wistar , Carrera , Temperatura Cutánea
10.
Neurosci Lett ; 673: 73-78, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29499311

RESUMEN

Listening to melodic music is regarded as a non-pharmacological intervention that ameliorates various disease symptoms, likely by changing the activity of brain monoaminergic systems. Here, we investigated the effects of exposure to melodic music on the concentrations of dopamine (DA), serotonin (5-HT) and their respective metabolites in the caudate-putamen (CPu) and nucleus accumbens (NAcc), areas linked to reward and motor control. Male adult Wistar rats were randomly assigned to a control group or a group exposed to music. The music group was submitted to 8 music sessions [Mozart's sonata for two pianos (K. 488) at an average sound pressure of 65 dB]. The control rats were handled in the same way but were not exposed to music. Immediately after the last exposure or control session, the rats were euthanized, and their brains were quickly removed to analyze the concentrations of 5-HT, DA, 5-hydroxyindoleacetic acid (5-HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the CPu and NAcc. Auditory stimuli affected the monoaminergic system in these two brain structures. In the CPu, auditory stimuli increased the concentrations of DA and 5-HIAA but did not change the DOPAC or 5-HT levels. In the NAcc, music markedly increased the DOPAC/DA ratio, suggesting an increase in DA turnover. Our data indicate that auditory stimuli, such as exposure to melodic music, increase DA levels and the release of 5-HT in the CPu as well as DA turnover in the NAcc, suggesting that the music had a direct impact on monoamine activity in these brain areas.


Asunto(s)
Núcleo Caudado/metabolismo , Dopamina/metabolismo , Música , Núcleo Accumbens/metabolismo , Putamen/metabolismo , Serotonina/metabolismo , Estimulación Acústica , Animales , Percepción Auditiva , Masculino , Actividad Motora , Prosencéfalo/metabolismo , Ratas Wistar , Recompensa
11.
Clin Exp Pharmacol Physiol ; 43(1): 116-24, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26475529

RESUMEN

The effects of physical training on hypothalamic activation after exercise and their relationship with heat dissipation were investigated. Following 8 weeks of physical training, trained (TR, n = 9) and untrained (UN, n = 8) Wistar rats were submitted to a regimen of incremental running until fatigue while body and tail temperatures were recorded. After exercise, hypothalamic c-Fos immunohistochemistry analysis was performed. The workload, body-heating rate, heat storage and body temperature threshold for cutaneous vasodilation were calculated. Physical training increased the number of c-Fos immunoreactive neurons in the paraventricular, medial preoptic and median preoptic nucleus by 112%, 90% and 65% (P < 0.01) after exercise, respectively. In these hypothalamic regions, increased neuronal activation was directly associated with the increased workload performed by TR animals (P < 0.01). Moreover, a reduction of 0.6°C in the body temperature threshold for cutaneous vasodilation was shown by TR animals (P < 0.01). This reduction was possibly responsible for the lower body-heating rate (0.019 ± 0.002°C/min, TR vs 0.030 ± 0.005°C/min, UN, P < 0.05) and the decreased ratio between heat storage and the workload performed by TR animals (18.18 ± 1.65 cal/kg, TR vs 31.38 ± 5.35 cal/kg, UN, P < 0.05). The data indicate that physical training enhances hypothalamic neuronal activation during exercise. This enhancement is the central adaptation relating to better physical performance, characterized by a lower ratio of heat stored to workload performed, due to improved heat dissipation.


Asunto(s)
Hipotálamo/citología , Neuronas/citología , Condicionamiento Físico Animal , Animales , Regulación de la Temperatura Corporal , Regulación de la Expresión Génica , Calor , Hipotálamo/fisiología , Masculino , Condicionamiento Físico Animal/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar
12.
Endocrinology ; 151(7): 3247-57, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20410200

RESUMEN

Prolactin (PRL) is tonically inhibited by dopamine (DA) released from neurons in the arcuate and periventricular nuclei. Kisspeptin plays a pivotal role in LH regulation. In rodents, kisspeptin neurons are found mostly in the anteroventral periventricular and arcuate nuclei, but the physiology of arcuate kisspeptin neurons is not completely understood. We investigated the role of kisspeptin in the control of hypothalamic DA and pituitary PRL secretion in adult rats. Intracerebroventricular kisspeptin-10 (Kp-10) elicited PRL release in a dose-dependent manner in estradiol (E2)-treated ovariectomized rats (OVX+E2), whereas no effect was found in oil-treated ovariectomized rats (OVX). Kp-10 increased PRL release in males and proestrous but not diestrous females. Associated with the increase in PRL release, intracerebroventricular Kp-10 reduced Fos-related antigen expression in tyrosine hydroxylase-immunoreactive (ir) neurons of arcuate and periventricular nuclei in OVX+E2 rats, with no effect in OVX rats. Kp-10 also decreased 3,4-dihydroxyphenylacetic acid concentration and 3,4-dihydroxyphenylacetic acid-DA ratio in the median eminence but not striatum in OVX+E2 rats. Double-label immunofluorescence combined with confocal microscopy revealed kisspeptin-ir fibers in close apposition to and in contact with tyrosine hydroxylase-ir perikarya in the arcuate. In addition, Kp-10 was not found to alter PRL release from anterior pituitary cell cultures regardless of E2 treatment. We provide herein evidence that kisspeptin regulates PRL release through inhibition of hypothalamic dopaminergic neurons, and that this mechanism is E2 dependent in females. These findings suggest a new role for central kisspeptin with possible implications for reproductive physiology.


Asunto(s)
Dopamina/metabolismo , Hipotálamo/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oligopéptidos/farmacología , Prolactina/metabolismo , Animales , Células Cultivadas , Cromatografía Líquida de Alta Presión , Dinoprostona/farmacología , Femenino , Inmunohistoquímica , Kisspeptinas , Masculino , Radioinmunoensayo , Ratas , Ratas Sprague-Dawley , Ratas Wistar
13.
Neurosci Res ; 66(3): 256-64, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19941911

RESUMEN

Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been widely associated to beneficial effects over different neuropathologies, but only a few studies associate them to Parkinson's disease (PD). Rats were submitted to chronic supplementation (21-90 days of life) with fish oil, rich in omega-3 PUFAs, and were uni- or bilaterally lesioned with 4microg of the neurotoxin 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle. Although lipid incorporation was evidenced in neuronal membranes, it was not sufficient to compensate motor deficits induced by 6-OHDA. In contrast, omega-3 PUFAs were capable of reducing rotational behavior induced by apomorphine, suggesting neuroprotection over dyskinesia. The beneficial effects of omega-3 PUFAs were also evident in the maintenance of thiobarbituric acid reactive substances index from animals lesioned with 6-OHDA similar to levels from SHAM and intact animals. Although omega-3 PUFAs did not modify the tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area, nor the depletion of dopamine (DA) and its metabolites in the striatum, DA turnover was increased after omega-3 PUFAs chronic supplementation. Therefore, it is proposed that omega-3 PUFAs action characterizes the adaptation of remaining neurons activity, altering striatal DA turnover without modifying the estimated neuronal population.


Asunto(s)
Encéfalo/metabolismo , Ácidos Grasos Omega-3/uso terapéutico , Actividad Motora , Trastornos Parkinsonianos/dietoterapia , Trastornos Parkinsonianos/metabolismo , Animales , Apomorfina/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Ácidos Grasos Omega-3/administración & dosificación , Peroxidación de Lípido , Masculino , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/metabolismo , Oxidopamina , Trastornos Parkinsonianos/inducido químicamente , Distribución Aleatoria , Ratas , Ratas Wistar , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Resultado del Tratamiento , Tirosina 3-Monooxigenasa/metabolismo
14.
Brain Res Bull ; 73(1-3): 127-34, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17499646

RESUMEN

Prolactin (PRL) secretory surges have been reported on the afternoons of both proestrus and estrous in cycling rats. As neuroendocrine regulation of estrous PRL surge is poorly understood, the present study aimed to investigate the involvement of hypothalamic dopamine and serotonin as well as of plasma ovarian steroids in this hormonal surge generation. For that, we determined the concentrations of dopamine, serotonin and their respective metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindole-3-acetic acid (5-HIAA) in the mediobasal hypothalamus (MBH) and medial preoptic area (MPOA) throughout the day of estrus and correlated them with plasma PRL levels. In a second study, we evaluated the effect of ovariectomy on the morning of proestrus on PRL surges of both proestrus and estrus. Dopamine turnover, as determined by DOPAC/dopamine ratio, increased in both the MBH and MPOA coinciding with the afternoon PRL surge on estrus. In contrast, both the concentration and turnover (5-HIAA/serotonin) of serotonin within these areas were unaltered during estrus. In addition, ovariectomy reduced plasma estradiol and progesterone levels but did not alter the PRL surges on proestrus and estrus. Considering that dopamine is the main inhibitor of PRL release and that PRL auto-regulates its secretion through a short-loop feedback mechanism, our present results suggest that PRL may suppress its own secretion during the estrus surge through the activation of the dopaminergic neurons in the MBH and MPOA. In addition, the PRL surge on estrus seems do not depend on either the activity of hypothalamic serotonin or the increased secretion of ovarian steroids on proestrus.


Asunto(s)
Dopamina/fisiología , Estro/fisiología , Hipotálamo/fisiología , Ovariectomía , Área Preóptica/fisiología , Proestro/fisiología , Prolactina/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Dopamina/metabolismo , Electroquímica , Estro/metabolismo , Femenino , Ácido Hidroxiindolacético/metabolismo , Hipotálamo/metabolismo , Área Preóptica/metabolismo , Proestro/metabolismo , Radioinmunoensayo , Ratas , Ratas Wistar , Serotonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA