Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pain Res Manag ; 2023: 4030622, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776486

RESUMEN

Referred pain/sensation provoked by trigger points suits the nociplastic pain criteria. There is a debate over whether trigger points are related to a peripheral phenomenon or central sensitization (CS) processes. Referred pain is considered a possible sign of CS, which occurs probably mainly due to the abnormal activity of the immune and autonomic nervous systems. To confirm abnormal autonomic reactivity within the referred pain zone of active trigger points, a new diagnostic tool, the Skorupska Protocol® (the SP test®), was applied. The test uses noxious stimulation (10 minutes of dry needling under infrared camera control) as a diagnostic tool to confirm abnormal autonomic nervous system activity. A response to the SP test® of healthy subjects with referred pain sensations provoked by latent trigger points (LTrPs) stimulation was not explored before. The study aims at examining if LTrPs can develop an autonomic response. Methods. Two groups of healthy subjects, (i) gluteus minimus LTrPs with referred pain (n = 20) and (ii) control (n = 27), were examined using the SP test®. Results. Abnormal autonomic activity within the referred pain zone was confirmed for all analyzed LTrPs subjects. 70% of control subjects had no feature of vasodilatation and others presented minor vasomotor fluctuations. The size of vasomotor reactivity within the referred pain zone was LTrPs 11.1 + 10.96% vs. control 0.8 + 0.6% (p < 0.05). Conclusions. Noxious stimulation of latent TrPs induces abnormal autonomic nervous system activity within the referred pain zone. The observed phenomenon supports the concept of central nervous system involvement in the referred pain patomechanizm.


Asunto(s)
Síndromes del Dolor Miofascial , Dolor Referido , Humanos , Sensibilización del Sistema Nervioso Central , Músculo Esquelético , Puntos Disparadores , Sistema Nervioso Autónomo
2.
Sci Rep ; 12(1): 257, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997114

RESUMEN

Light-emitting diodes (LEDs) and high-pressure sodium lamps (HPS) are among the most commonly used light sources for plant cultivation. The objective of this study was to evaluate the effect of two controlled-environment production systems differing in light sources on growth, photosynthetic activity, and secondary metabolism of common buckwheat. We hypothesized that LED light with the majority of red and blue waves would increase physiological and biochemical parameters compared to sunlight supplemented with HPS lamps. The experiment was performed in a phytotronic chamber (LEDs) and in a greenhouse (solar radiation supplemented with HPS lamps as a control). The effects were analyzed at the flowering phase with biometric measurements, leaf chlorophyll index, the kinetics of chlorophyll a fluorescence, content of soluble carbohydrates and phenolics in the leaves. Applied LED light decreased the biomass but stimulated the production of phenolics compared to control plants. In control plants, a positive correlation between flavonoid content and energy dissipation from photosystem II (DIo/CSm) was found, while in plants under LEDs total pool of phenolic content correlated with this parameter and the quantum yield of electron transport (φ Ro and ψ Ro) was lower than that of the control, probably affecting buckwheat biomass.


Asunto(s)
Producción de Cultivos , Productos Agrícolas/efectos de la radiación , Fagopyrum/efectos de la radiación , Luz , Iluminación/instrumentación , Fotosíntesis/efectos de la radiación , Metabolismo Secundario/efectos de la radiación , Biomasa , Clorofila A/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Fagopyrum/crecimiento & desarrollo , Fagopyrum/metabolismo , Cinética , Fenoles/metabolismo
3.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800930

RESUMEN

Common buckwheat (Fagopyrum esculentum Moench), a pseudocereal crop, produces a large number of flowers, but this does not guarantee high seed yields. This species demonstrates strong abortion of flowers and embryos. High temperatures during the generative growth phase result in an increase in the degeneration of embryo sacs. The aim of this study was to investigate proteomic changes in flowers and leaves of two common buckwheat accessions with different degrees of heat tolerance, Panda and PA15. Two-dimensional gel electrophoresis and mass spectrometry techniques were used to analyze the proteome profiles. Analyses were conducted for flower buds, open flowers capable of fertilization, and wilted flowers, as well as donor leaves, i.e., those growing closest to the inflorescences. High temperature up-regulated the expression of 182 proteins. The proteomic response to heat stress differed between the accessions and among their organs. In the Panda accession, we observed a change in abundance of 17, 13, 28, and 11 proteins, in buds, open and wilted flowers, and leaves, respectively. However, in the PA15 accession there were 34, 21, 63, and 21 such proteins, respectively. Fifteen heat-affected proteins were common to both accessions. The indole-3-glycerol phosphate synthase chloroplastic-like isoform X2 accumulated in the open flowers of the heat-sensitive cultivar Panda in response to high temperature, and may be a candidate protein as a marker of heat sensitivity in buckwheat plants.


Asunto(s)
Fagopyrum/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Proteoma , Termotolerancia/genética , Electroforesis en Gel Bidimensional , Fagopyrum/embriología , Fagopyrum/genética , Fagopyrum/crecimiento & desarrollo , Respuesta al Choque Térmico/genética , Calor , Indol-3-Glicerolfosfato Sintasa/biosíntesis , Indol-3-Glicerolfosfato Sintasa/genética , Metionina Adenosiltransferasa/biosíntesis , Metionina Adenosiltransferasa/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Espectrometría de Masas en Tándem , Regulación hacia Arriba
4.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255746

RESUMEN

Despite abundant flowering throughout the season, common buckwheat develops a very low number of kernels probably due to competition for assimilates. We hypothesized that plants with a shorter flowering period may give a higher seed yield. To verify the hypothesis, we studied nutrient stress in vitro and in planta and analyzed different embryological and yield parameters, including hormone profile in the flowers. In vitro cultivated flowers on media with strongly reduced nutrient content demonstrated a drastic increase in degenerated embryo sacs. In in planta experiments, where 50% or 75% of flowers or all lateral ramifications were removed, the reduction of the flower competition by half turned out to be the most promising treatment for improving yield. This treatment increased the frequency of properly developed embryo sacs, the average number of mature seeds per plant, and their mass. Strong seed compensation under 50% inflorescence removal could result from increased production of salicylic and jasmonic acid that both favor more effective pollinator attraction. Plants in single-shoot cultivation finished their vegetation earlier, and they demonstrated greater single seed mass per plant than in control. This result suggests that plants of common buckwheat with shorter blooming period could deliver higher seed yield.


Asunto(s)
Fagopyrum/genética , Flores/genética , Reproducción/genética , Semillas/genética , Fagopyrum/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Polinización/genética , Estaciones del Año , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA