Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142923

RESUMEN

Heme released from red blood cells targets a number of cell components including the cytoskeleton. The purpose of the present study was to determine the impact of free heme (20-300 µM) on human skeletal muscle fibres made available during orthopedic surgery. Isometric force production and oxidative protein modifications were monitored in permeabilized skeletal muscle fibre segments. A single heme exposure (20 µM) to muscle fibres decreased Ca2+-activated maximal (active) force (Fo) by about 50% and evoked an approximately 3-fold increase in Ca2+-independent (passive) force (Fpassive). Oxidation of sulfhydryl (SH) groups was detected in structural proteins (e.g., nebulin, α-actinin, meromyosin 2) and in contractile proteins (e.g., myosin heavy chain and myosin-binding protein C) as well as in titin in the presence of 300 µM heme. This SH oxidation was not reversed by dithiothreitol (50 mM). Sulfenic acid (SOH) formation was also detected in the structural proteins (nebulin, α-actinin, meromyosin). Heme effects on SH oxidation and SOH formation were prevented by hemopexin (Hpx) and α1-microglobulin (A1M). These data suggest that free heme has a significant impact on human skeletal muscle fibres, whereby oxidative alterations in structural and contractile proteins limit contractile function. This may explain and or contribute to the weakness and increase of skeletal muscle stiffness in chronic heart failure, rhabdomyolysis, and other hemolytic diseases. Therefore, therapeutic use of Hpx and A1M supplementation might be effective in preventing heme-induced skeletal muscle alterations.


Asunto(s)
Cisteína/metabolismo , Hemo/farmacología , Contracción Muscular/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Proteínas Musculares/metabolismo , Miofibrillas/efectos de los fármacos , Secuencia de Aminoácidos , Calcio/metabolismo , Cisteína/química , Humanos , Espectrometría de Masas/métodos , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Miofibrillas/metabolismo , Miofibrillas/patología , Oxidación-Reducción
2.
Behav Brain Res ; 326: 200-208, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28284946

RESUMEN

The medial prefrontal cortex (mPFC) is thought to be an essential brain region for sensorimotor gating. The exact neuronal mechanisms, however, have not been extensively investigated yet by delicate single unit recording methods Prepulse inhibition (PPI) of the startle response is a broadly used important tool to investigate the inhibitory processes of sensorimotor gating. The present study was designed to examine the neuronal mechanisms of sensorimotor gating in the mPFC in freely moving rats. In these experiments, the animals were subjected to both pulse alone and prepulse+pulse stimulations. Head acceleration and the neuronal activity of the mPFC were simultaneously recorded. To adequately measure the startle reflex, a new headstage with 3D-accelerometer was created. The duration of head acceleration was longer in pulse alone trials than in prepulse+pulse trial conditions, and the amplitude of head movements was significantly larger during the pulse alone than during the prepulse+pulse situations. Single unit activities in the mPFC were recorded by means of chronically implanted tetrodes during acoustic stimulation evoked startle response and PPI. High proportion of medial prefrontal cortical neurons responded to these stimulations by characteristic firing patterns: short duration equal and unequal excitatory, medium duration excitatory, and long duration excitatory and inhibitory responses were recorded. The present findings, first time in the literature, demonstrated the startle and PPI elicited neuronal activity changes of the mPFC, and thus, provided evidence for a key role of this limbic forebrain area in sensorimotor gating process.


Asunto(s)
Neuronas/fisiología , Corteza Prefrontal/fisiología , Reflejo de Sobresalto/fisiología , Filtrado Sensorial/fisiología , Estimulación Acústica , Animales , Fenómenos Electrofisiológicos , Masculino , Inhibición Prepulso/fisiología , Ratas , Ratas Wistar
3.
Life Sci ; 90(11-12): 407-15, 2012 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-22285599

RESUMEN

AIMS: We hypothesized that arachidonic acid produced by anandamide breakdown contributes to the vascular effects of anandamide. MAIN METHODS: Isolated, pressurized rat skeletal muscle arteries, which possess spontaneous myogenic tone, were treated with anandamide, arachidonic acid, capsaicin (vanilloid receptor agonist), WIN 55-212-2 (cannabinoid receptor agonist), URB-597 (FAAH inhibitor), baicalein (lipoxygenase inhibitor), PPOH (cytochrome P450 inhibitor), and indomethacin (cyclooxygenase inhibitor). Changes in the arteriolar diameter in response to the various treatments were measured. To assess the effect of anandamide metabolism, anandamide was applied for 20 min followed by washout for 40 min. This protocol was used to eliminate other, more direct effects of anandamide in order to reveal how anandamide metabolism may influence vasodilation. KEY FINDINGS: Anandamide at a low dose (1µM) evoked a loss of myogenic tone, while a high dose (30 µM) not only attenuated the myogenic response but also evoked acute dilation. Both of these effects were inhibited by the FAAH inhibitor URB-597 and were mimicked by arachidonic acid. The CB1 and CB2 agonist R-WIN 55-212-2 and the vanilloid receptor agonist capsaicin were without effect on the myogenic response. The inhibition of the myogenic response by anandamide was blocked by indomethacin and PPOH, but not by baicalein or removal of the endothelium. FAAH expression in the smooth muscle cells of the blood vessels was confirmed by immunohistochemistry. SIGNIFICANCE: Anandamide activates the arachidonic acid pathway in the microvasculature, affecting vascular autoregulation (myogenic response) and local perfusion.


Asunto(s)
Ácidos Araquidónicos/farmacología , Arteriolas/metabolismo , Presión Sanguínea/fisiología , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Alcamidas Poliinsaturadas/farmacología , Análisis de Varianza , Animales , Ácidos Araquidónicos/metabolismo , Arteriolas/efectos de los fármacos , Benzamidas , Benzoxazinas , Caproatos , Capsaicina , Carbamatos , Relación Dosis-Respuesta a Droga , Endocannabinoides , Flavanonas , Inmunohistoquímica , Técnicas In Vitro , Indometacina , Morfolinas , Músculo Liso Vascular/metabolismo , Naftalenos , Alcamidas Poliinsaturadas/metabolismo , Ratas
4.
Brain Res Bull ; 87(1): 117-29, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22033501

RESUMEN

Slow cortical rhythm (SCR) is characterized by rhythmic cycling of active (UP) and silent (DOWN) states in cortical cells. In urethane anesthesia, SCR appears as alternation of almost isoelectrical EEG periods and low-frequency, high-amplitude large shifts with superimposed high-frequency activity in the local field potentials (LFPs). Dense cholinergic projection reaches the cortex from the basal forebrain (BF), and acetylcholine (ACh) has been demonstrated to play a crucial role in the regulation of cortical activity. In the present experiments, cholinergic drugs were administered topically to the cortical surface of urethane-anesthetized rats to examine the direct involvement of ACh and the BF cholinergic system in the SCR. SCR was recorded by a 16-pole vertical electrode array from the hindlimb area of the somatosensory cortex. Multiple unit activity (MUA) was recorded from layer V to VI in close proximity of the recording array. Neither a low dose (10 mM solution) of the muscarinic antagonist atropine or the nicotinic agonist nicotine (1 mM solution) had any effect on SCR. In contrast, the higher dose (100 mM solution) of atropine, the cholinergic agonist carbachol (32 mM solution), and the cholinesterase inhibitor physostigmine (13 mM solution) all decreased the number of UP states, delta power (0-3 Hz) and MUA. These results suggest that cholinergic system may influence SCR through muscarinic mechanisms during urethane anesthesia. Cholinergic activation obstructs the mechanisms responsible for local or global synchronization seen during SCR as this rhythm was disrupted or aborted. Muscarinic antagonism can evoke similar changes when high dose of atropine is applied.


Asunto(s)
Acetilcolina/metabolismo , Potenciales de Acción/efectos de los fármacos , Anestésicos Intravenosos/farmacología , Electroencefalografía/métodos , Uretano/farmacología , Potenciales de Acción/fisiología , Animales , Atropina/farmacología , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Inhibidores de la Colinesterasa/farmacología , Masculino , Antagonistas Muscarínicos/farmacología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Fisostigmina/farmacología , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/fisiología
5.
J Pharmacol Exp Ther ; 315(2): 921-30, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16085759

RESUMEN

Serious efforts have been made to develop anxiolytics with improved clinical utility and reduced side effects. 5-Hydroxytryptamine (5-HT)(2C) receptor antagonists are potential anxiolytics; however, their effects on vigilance are not well characterized. To compare the effects of benzodiazepines and subtype-selective 5-HT(2C) receptor antagonists on anxiety, vigilance, and electroencephalogram (EEG) power density, social interaction test and polygraphic recordings were performed in male Sprague-Dawley rats after chlordiazepoxide (CDP; 4.0 mg/kg i.p.) and SB-242084 (6-chloro-5-methyl-1-[2-(2-methylpyrid-3-yloxy)-pyrid-5-yl carbamoyl] indoline) (0.1, 0.3, and 1.0 mg/kg i.p.) treatment. CDP and SB-242084 (0.3 and 1.0 mg/kg) had similar anxiolytic effects. Spectral analysis of EEG in wakefulness (W) and paradoxical sleep (PS) showed an opposite effect on activity (5-9 Hz); it decreased after CDP, whereas it increased after SB-242084 (even at 0.1 mg/kg). In addition, CDP significantly decreased slow-wave activity (0.5-4 Hz) in deep slow-wave sleep (SWS-2) and increased power at frequencies above 12 Hz mainly in W and PS. A markedly increased intermediate stage of sleep was also found after CDP treatment. At the highest dose, SB-242084 increased W and decreased SWS-2. In summary, low but potent anxiolytic doses of the subtype-selective 5-HT(2C) receptor antagonist SB-242084 did not affect vigilance states but caused an increased activity in W, raising the possibility of a cognitive-enhancing effect of the drug. In contrast, acute CDP administration, based on spectral analysis of the EEG, produced a more superficial sleep along with a decreased activity.


Asunto(s)
Aminopiridinas/farmacología , Ansiolíticos/farmacología , Clordiazepóxido/farmacología , Electroencefalografía/efectos de los fármacos , Indoles/farmacología , Antagonistas de la Serotonina/farmacología , Estimulación Acústica , Animales , Ansiedad/psicología , Nivel de Alerta/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Polisomnografía/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2C/efectos de los fármacos , Sueño/efectos de los fármacos , Conducta Social , Estrés Psicológico/psicología , Ritmo Teta/efectos de los fármacos
6.
J Biol Chem ; 279(51): 53674-82, 2004 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-15471852

RESUMEN

The capsaicin receptor VR1 is a polymodal nociceptor activated by multiple stimuli. It has been reported that protein kinase C plays a role in the sensitization of VR1. Protein kinase D/PKCmu is a member of the protein kinase D serine/threonine kinase family that exhibits structural, enzymological, and regulatory features distinct from those of the PKCs, with which they are related. As part of our effort to optimize conditions for evaluating VR1 pharmacology, we found that treatment of Chinese hamster ovary (CHO) cells heterologously expressing rat VR1 (CHO/rVR1) with butyrate enhanced rVR1 expression and activity. The expression of PKCmu and PKCbeta1, but not of other PKC isoforms, was also enhanced by butyrate treatment, suggesting the possibility that these two isoforms might contribute to the enhanced activity of rVR1. In support of this hypothesis, we found the following. 1) Overexpression of PKCmu enhanced the response of rVR1 to capsaicin and low pH, and expression of a dominant negative variant of PKCmu reduced the response of rVR1. 2) Reduction of endogenous PKCmu using antisense oligonucleotides decreased the response of exogenous rVR1 expressed in CHO cells as well as of endogenous rVR1 in dorsal root ganglion neurons. 3) PKCmu localized to the plasma membrane when overexpressed in CHO/rVR1 cells. 4) PKCmu directly bound to rVR1 expressed in CHO cells as well as to endogenous rVR1 in dorsal root ganglia or to an N-terminal fragment of rVR1, indicating a direct interaction between PKCmu and rVR1. 5) PKCmu directly phosphorylated rVR1 or a longer N-terminal fragment (amino acids 1-118) of rVR1 but not a shorter one (amino acids 1-99). 6) Mutation of S116A in rVR1 blocked both the phosphorylation of rVR1 by PKCmu and the enhancement by PKCmu of the rVR1 response to capsaicin. We conclude that PKCmu functions as a direct modulator of rVR1.


Asunto(s)
Proteína Quinasa C/química , Receptores de Droga/química , Animales , Western Blotting , Butiratos/farmacología , Células CHO , Calcio/metabolismo , Células Cultivadas , Clonación Molecular , Cricetinae , Medios de Cultivo/farmacología , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Ganglios Espinales/metabolismo , Genes Dominantes , Glutatión Transferasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Inmunoprecipitación , Microscopía Confocal , Mutación , Neuronas/metabolismo , Oligonucleótidos/farmacología , Oligonucleótidos Antisentido/farmacología , Fosforilación , Unión Proteica , Isoformas de Proteínas , Proteína Quinasa C/metabolismo , Proteína Quinasa C beta , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Receptores de Droga/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo
7.
Cancer Res ; 64(9): 3243-55, 2004 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15126366

RESUMEN

Ingenol 3-angelate (I3A) is one of the active ingredients in Euphorbia peplus, which has been used in traditional medicine. Here, we report the initial characterization of I3A as a protein kinase C (PKC) ligand. I3A bound to PKC-alpha in the presence of phosphatidylserine with high affinity; however, under these assay conditions, little PKC isoform selectivity was observed. PKC isoforms did show different sensitivity and selectivity for down-regulation by I3A and phorbol 12-myristate 13-acetate (PMA) in WEHI-231, HOP-92, and Colo-205 cells. In all of the three cell types, I3A inhibited cell proliferation with somewhat lower potency than did PMA. In intact CHO-K1 cells, I3A was able to translocate different green fluorescent protein-tagged PKC isoforms, visualized by confocal microscopy, with equal or higher potency than PMA. PKC-delta in particular showed a different pattern of translocation in response to I3A and PMA. I3A induced a higher level of secretion of the inflammatory cytokine interleukin 6 compared with PMA in the WEHI-231 cells and displayed a marked biphasic dose-response curve for the induction. I3A was unable to cause the same extent of association of the C1b domain of PKC-delta with lipids, compared with PMA or the physiological regulator diacylglycerol, and was able to partially block the association induced by these agents, measured by surface plasmon resonance. The in vitro kinase activity of PKC-alpha induced by I3A was lower than that induced by PMA. The novel pattern of behavior of I3A makes it of great interest for further evaluation.


Asunto(s)
Diterpenos/farmacología , Proteína Quinasa C/metabolismo , Animales , Células CHO , Cricetinae , Diterpenos/química , Diterpenos/metabolismo , Regulación hacia Abajo , Euphorbia/química , Humanos , Interleucina-6/biosíntesis , Isoenzimas/metabolismo , Ligandos , Liposomas/química , Acetato de Tetradecanoilforbol/farmacología
8.
J Biol Chem ; 279(19): 20283-95, 2004 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-14996838

RESUMEN

Vanilloid receptor 1 (TRPV1), a membrane-associated cation channel, is activated by the pungent vanilloid from chili peppers, capsaicin, and the ultra potent vanilloid from Euphorbia resinifera, resiniferatoxin (RTX), as well as by physical stimuli (heat and protons) and proposed endogenous ligands (anandamide, N-arachidonyldopamine, N-oleoyldopamine, and products of lipoxygenase). Only limited information is available in TRPV1 on the residues that contribute to vanilloid activation. Interestingly, rabbits have been suggested to be insensitive to capsaicin and have been shown to lack detectable [(3)H]RTX binding in membranes prepared from their dorsal root ganglia. We have cloned rabbit TRPV1 (oTRPV1) and report that it exhibits high homology to rat and human TRPV1. Like its mammalian orthologs, oTRPV1 is selectively expressed in sensory neurons and is sensitive to protons and heat activation but is 100-fold less sensitive to vanilloid activation than either rat or human. Here we identify key residues (Met(547) and Thr(550)) in transmembrane regions 3 and 4 (TM3/4) of rat and human TRPV1 that confer vanilloid sensitivity, [(3)H]RTX binding and competitive antagonist binding to rabbit TRPV1. We also show that these residues differentially affect ligand recognition as well as the assays of functional response versus ligand binding. Furthermore, these residues account for the reported pharmacological differences of RTX, PPAHV (phorbol 12-phenyl-acetate 13-acetate 20-homovanillate) and capsazepine between human and rat TRPV1. Based on our data we propose a model of the TM3/4 region of TRPV1 bound to capsaicin or RTX that may aid in the development of potent TRPV1 antagonists with utility in the treatment of sensory disorders.


Asunto(s)
Receptores de Droga/genética , Receptores de Droga/metabolismo , Receptores de Droga/fisiología , Secuencia de Aminoácidos , Animales , Células CHO , Calcio/metabolismo , Capsaicina/farmacología , Cationes , Línea Celular , Clonación Molecular , Cricetinae , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Electrofisiología , Ganglios Espinales/metabolismo , Calor , Humanos , Concentración de Iones de Hidrógeno , Hibridación in Situ , Concentración 50 Inhibidora , Ligandos , Metionina/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Neuronas/metabolismo , Ésteres del Forbol/farmacología , Filogenia , Unión Proteica , Estructura Terciaria de Proteína , Protones , Conejos , Ratas , Receptores de Droga/química , Homología de Secuencia de Aminoácido , Serina/química , Temperatura , Treonina/química , Transfección , Tirosina/química
9.
Bioorg Med Chem ; 12(2): 371-85, 2004 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-14723956

RESUMEN

We recently reported that N-(4-t-butylbenzyl)-N'-[4-(methylsulfonylamino)benzyl] thiourea (2) was a high affinity antagonist of the vanilloid receptor with a binding affinity of K(i)=63 nM and an antagonism of K(i)=53.9 nM in rat VR1 heterologously expressed in Chinese hamster ovary (CHO) cells (Mol. Pharmacol. 2002, 62, 947-956). In an effort to further improve binding affinity and antagonistic potency, we have modified the C-region of the lead 4-t-butylbenzyl group with diverse surrogates, such as araalkyl, alkyl, 4-alkynylbenzyl, indanyl, 3,3-diarylpropyl, 4-alkoxybenzyl, 4-substituted piperazine and piperidine. The lipophilic surrogates, arylalkyl and alkyl, conferred modest decreases in binding affinities and antagonistic potencies; the groups having heteroatoms resulted in dramatic decreases. Our findings indicate that 4-t-butylbenzyl is one of the most favorable groups for high receptor binding and potent antagonism to VR1 in this structural series.


Asunto(s)
Receptores de Droga/antagonistas & inhibidores , Tiourea/análogos & derivados , Animales , Bioquímica/métodos , Células CHO , Capsaicina/farmacología , Cricetinae , Evaluación Preclínica de Medicamentos/métodos , Ratas , Receptores de Droga/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA