Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Biol ; 311(2): 297-310, 2001 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-11478862

RESUMEN

The RuvB hexamer is the chemomechanical motor of the RuvAB complex that migrates Holliday junction branch-points in DNA recombination and the rescue of stalled DNA replication forks. The 1.6 A crystal structure of Thermotoga maritima RuvB together with five mutant structures reveal that RuvB is an ATPase-associated with diverse cellular activities (AAA+-class ATPase) with a winged-helix DNA-binding domain. The RuvB-ADP complex structure and mutagenesis suggest how AAA+-class ATPases couple nucleotide binding and hydrolysis to interdomain conformational changes and asymmetry within the RuvB hexamer implied by the crystallographic packing and small-angle X-ray scattering in solution. ATP-driven domain motion is positioned to move double-stranded DNA through the hexamer and drive conformational changes between subunits by altering the complementary hydrophilic protein- protein interfaces. Structural and biochemical analysis of five motifs in the protein suggest that ATP binding is a strained conformation recognized both by sensors and the Walker motifs and that intersubunit activation occurs by an arginine finger motif reminiscent of the GTPase-activating proteins. Taken together, these results provide insights into how RuvB functions as a motor for branch migration of Holliday junctions.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Recombinación Genética , Thermotoga maritima/enzimología , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arginina/química , Arginina/genética , Arginina/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , Modelos Moleculares , Proteínas Motoras Moleculares/genética , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Mutación/genética , Conformación de Ácido Nucleico , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína , Recombinación Genética/genética , Alineación de Secuencia , Especificidad por Sustrato , Thermotoga maritima/genética
3.
Proc Natl Acad Sci U S A ; 87(17): 6654-8, 1990 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-2395868

RESUMEN

To develop a general approach to designing cofactor-binding sites for catalytic antibodies, we characterized structural patterns in the binding sites of antibodies and zinc enzymes. Superposition of eight sets of antibody light- and heavy-chain variable domains identified structurally conserved sites within the sequence-variable complementarity determining regions. The pattern for catalytic zinc sites included two ligands close in sequence, a sequence-distant ligand, and a main-chain hydrogen bond joining two ligands. In both the light- and heavy-chain variable domains, the stereochemistry of five structurally conserved sites general to all known antibody structures matched that of the zinc ligands of carbonic anhydrase: three residues on two hydrogen-bonded antiparallel beta-strands. For one such general site, an antibody model replacing residue 34 on the first complementarity determining region of the light chain (L1) and residues 89 and 91 on the third complementarity determining region of the light chain (L3) with histidine ligands formed a zinc-binding site with an open coordination position at the bottom of the antibody binding pocket. For the anti-fluorescein antibody 4-4-20, this L1-L3 site placed the zinc ion about 4 A from the bound fluorescein, an indicator for metal binding. This predicted zinc-binding mutant was created in the single-chain variable domain construct, expressed, and found by fluorescence quenching to bind metal ion with an affinity constant of 10(6) M-1. Thus, our template-based multisite design proved successful for remodeling an antibody to contain a cofactor-binding site, without requiring further mutagenesis and screening. Combination of a specific light or heavy chain containing a catalytic metal site with a library of complementary chains raised to potential substrates or transition state analogs should greatly improve the production of catalytic antibodies with desired activities and specificities.


Asunto(s)
Anticuerpos , Modelos Moleculares , Sitios de Unión de Anticuerpos , Cobre , Región Variable de Inmunoglobulina , Cinética , Ligandos , Conformación Proteica , Zinc
4.
Protein Eng ; 2(3): 239-46, 1988 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-2976939

RESUMEN

The nonsense codon, UGA, has for the first time recently been shown to encode selenocysteine in two proteins, mouse glutathione peroxidase (GSH-Px) (EC 1.11.1.9) and bacterial formate dehydrogenase. A co-translational rather than post-translational selenium-incorporation mechanism has been implicated. Furthermore, high expression levels of GSH-Px have suggested that suppression of termination is efficient and specific. We have isolated and characterized pituitary, kidney and placenta cDNAs for bovine, human and mouse GSH-Px respectively. It is demonstrated that this novel suppression event occurs in diverse tissues, in at least three mammalian species and at the translational step. Surprisingly, GSH-Px is shown to be extramitochondrially encoded, indicating a cytosolic suppression event rather than one utilizing the mitochondria's well-documented extended codon-reading ability. Sequence analysis reveals that a simple proximal contextual pattern responsible for readthrough does not exist. Analysis of predicted secondary structures of mRNAs, however, has revealed a conformation which may be unique to selenocysteine proteins and may prove useful as a tool for artificial incorporation of selenocysteines. A human intron for GSH-Px from an unspliced mRNA has been isolated whose position indicates an ancient, divergent evolutionary relationship with thioredoxin-S2, rather than an independent convergent one.


Asunto(s)
Cisteína/análogos & derivados , ADN/metabolismo , Glutatión Peroxidasa/metabolismo , Selenio/metabolismo , Animales , Secuencia de Bases , Bovinos , Cisteína/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Estructura Molecular , Selenocisteína
5.
Nature ; 306(5940): 284-7, 1983.
Artículo en Inglés | MEDLINE | ID: mdl-6316150

RESUMEN

Copper, zinc superoxide dismutase (SOD) catalyses the very rapid two-step dismutation of the toxic superoxide radical (O-2) to molecular oxygen and hydrogen peroxide through the alternate reduction and oxidation of the active-site copper. We report here that after refitting and further refinement of the previous 2 A structure of SOD2, analysis of the new model and its calculated molecular surface shows an extensive surface topography of sequence-conserved residues stabilized by underlying tight packing and H-bonding. There is a single, highly complementary position for O-2 to bind to both the Cu(II) and activity-important Arg 141 with correct geometry; two water molecules form a ghost of the superoxide in this position. The geometry and molecular surface of the active site, together with biochemical data, suggest a specific model for the enzyme mechanism.


Asunto(s)
Superóxido Dismutasa , Sitios de Unión , Catálisis , Cobre , Cianuros/metabolismo , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA