Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
eNeuro ; 8(2)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33658308

RESUMEN

The motor thalamus relays signals from subcortical structures to the motor cortical areas. Previous studies in songbirds and rodents suggest that cortical feedback inputs crucially contribute to the generation of movement-related activity in the motor thalamus. In primates, however, it remains uncertain whether the corticothalamic projections may play a role in shaping neuronal activity in the motor thalamus. Here, using an optogenetic inactivation technique with the viral vector system expressing halorhodopsin, we investigated the role of cortical input in modulating thalamic neuronal activity during goal-directed behavior. In particular, we assessed whether the suppression of signals originating from the supplementary eye field at the corticothalamic terminals could change the task-related neuronal modulation in the oculomotor thalamus in monkeys performing a self-initiated saccade task. We found that many thalamic neurons exhibited changes in their firing rates depending on saccade direction or task event, indicating that optical stimulation exerted task-specific effects on neuronal activity beyond the global changes in baseline activity. These results suggest that the corticothalamic projections might be actively involved in the signal processing necessary for goal-directed behavior. However, we also found that some thalamic neurons exhibited overall, non-task-specific changes in the firing rate during optical stimulation, even in control animals without vector injections. The stimulation effects in these animals started with longer latency, implying a possible thermal effect on neuronal activity. Thus, our results not only reveal the importance of direct cortical input in neuronal activity in the primate motor thalamus, but also provide useful information for future optogenetic studies.


Asunto(s)
Objetivos , Optogenética , Animales , Vías Nerviosas , Neuronas , Primates , Tálamo
2.
Brain Nerve ; 68(11): 1253-1261, 2016 Nov.
Artículo en Japonés | MEDLINE | ID: mdl-27852016

RESUMEN

The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.


Asunto(s)
Ganglios Basales/anatomía & histología , Mapeo Encefálico , Corteza Motora/anatomía & histología , Vías Nerviosas/anatomía & histología , Neuroanatomía , Corteza Prefrontal/anatomía & histología , Tálamo/anatomía & histología , Animales , Humanos
3.
J Neurosci ; 33(25): 10209-20, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23785137

RESUMEN

It is widely accepted that dorsal striatum neurons participate in either the direct pathway (expressing dopamine D1 receptors) or the indirect pathway (expressing D2 receptors), controlling voluntary movements in an antagonistically balancing manner. The D1- and D2-expressing neurons are activated and inactivated, respectively, by dopamine released from substantia nigra neurons encoding reward expectation. However, little is known about the functional representation of motor information and its reward modulation in individual striatal neurons constituting the two pathways. In this study, we juxtacellularly recorded the spike activity of single neurons in the dorsolateral striatum of rats performing voluntary forelimb movement in a reward-predictable condition. Some of these neurons were identified morphologically by a combination of juxtacellular visualization and in situ hybridization for D1 mRNA. We found that the striatal neurons exhibited distinct functional activations before and during the forelimb movement, regardless of the expression of D1 mRNA. They were often positively, but rarely negatively, modulated by expecting a reward for the correct motor response. The positive reward modulation was independent of behavioral differences in motor performance. In contrast, regular-spiking and fast-spiking neurons in any layers of the motor cortex displayed only minor and unbiased reward modulation of their functional activation in relation to the execution of forelimb movement. Our results suggest that the direct and indirect pathway neurons cooperatively rather than antagonistically contribute to spatiotemporal control of voluntary movements, and that motor information is subcortically integrated with reward information through dopaminergic and other signals in the skeletomotor loop of the basal ganglia.


Asunto(s)
Movimiento/fisiología , Neostriado/fisiología , Neuronas/fisiología , Recompensa , Animales , Ganglios Basales/fisiología , Biotina/análogos & derivados , Condicionamiento Operante/fisiología , Dextranos , Fenómenos Electrofisiológicos , Colorantes Fluorescentes , Miembro Anterior/fisiología , Hibridación in Situ , Masculino , Corteza Motora/citología , Corteza Motora/fisiología , Neostriado/citología , Red Nerviosa/fisiología , Ratas , Ratas Long-Evans , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/fisiología
4.
Neuron ; 78(5): 839-54, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23684785

RESUMEN

Highly topographic organization of neural circuits exists for the regulation of various brain functions in corticobasal ganglia circuits. Although neural circuit-specific refinement during synapse development is essential for the execution of particular neural functions, the molecular and cellular mechanisms for synapse refinement are largely unknown. Here, we show that protocadherin 17 (PCDH17), one of the nonclustered δ2-protocadherin family members, is enriched along corticobasal ganglia synapses in a zone-specific manner during synaptogenesis and regulates presynaptic assembly in these synapses. PCDH17 deficiency in mice causes facilitated presynaptic vesicle accumulation and enhanced synaptic transmission efficacy in corticobasal ganglia circuits. Furthermore, PCDH17(-/-) mice exhibit antidepressant-like phenotypes that are known to be regulated by corticobasal ganglia circuits. Our findings demonstrate a critical role for PCDH17 in the synaptic development of specific corticobasal ganglia circuits and suggest the involvement of PCDH17 in such circuits in depressive behaviors.


Asunto(s)
Ganglios Basales/citología , Cadherinas/fisiología , Corteza Cerebral/citología , Neuronas/fisiología , Terminales Presinápticos/fisiología , Sinapsis/genética , Estimulación Acústica , Animales , Animales Recién Nacidos , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Transformada , Condicionamiento Psicológico/fisiología , Cricetinae , Cricetulus , Homólogo 4 de la Proteína Discs Large , Conducta Exploratoria , Miedo/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Guanilato-Quinasas/metabolismo , Suspensión Trasera/fisiología , Humanos , Técnicas In Vitro , Macaca mulatta , Masculino , Aprendizaje por Laberinto/fisiología , Potenciales de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Microscopía Electrónica , Red Nerviosa/fisiología , Neuronas/metabolismo , Neuronas/ultraestructura , Técnicas de Placa-Clamp , Protocadherinas , Natación/fisiología , Sinapsis/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica/genética , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Proteínas de Transporte Vesicular de Glutamato/metabolismo
5.
Eur J Neurosci ; 27(1): 238-53, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18093168

RESUMEN

The internal segment of the globus pallidus (GPi) receives motor-related cortical signals mainly through the striatum, the external segment of the globus pallidus (GPe) and the subthalamic nucleus (STN). The GPi sends its outputs outside the basal ganglia and plays a key role in motor control. Extracellular unit recordings were performed in awake monkeys to explore how glutamatergic STN inputs and GABAergic striatal and GPe inputs control spontaneous activity and how these inputs contribute to motor cortex stimulation-induced responses of GPi neurons. The typical responses of GPi neurons to cortical stimulation consisted of an early excitation, an inhibition and a late excitation. Local applications of the NMDA receptor antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid and/or the AMPA/kainate receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulphonamide in the vicinity of recorded GPi neurons reduced the firing rate, and abolished or attenuated both early and late excitations following cortical stimulation. Local application of the GABA(A) receptor antagonist gabazine increased the firing rate, induced oscillatory firings and diminished the cortically induced inhibition. Muscimol or gabazine injection into the STN or GPe also altered the firing rate, and attenuated the late excitation of GPi neurons. The gabazine injection into the STN occasionally induced dyskinesia with significantly decreased GPi activity. These data suggest that the early and late excitations are glutamatergic and induced by the cortico-STN-GPi and cortico-striato-GPe-STN-GPi pathways, respectively. The inhibition is GABAergic and induced by the cortico-striato-GPi pathway. In addition, these inputs are the main factors governing the spontaneous activity of GPi neurons.


Asunto(s)
Globo Pálido/fisiología , Ácido Glutámico/metabolismo , Corteza Motora/fisiología , Vigilia/fisiología , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Conducta Animal , Bicuculina/farmacología , Estimulación Eléctrica/métodos , Femenino , Antagonistas del GABA/farmacología , Macaca fascicularis , Macaca mulatta , Masculino , Actividad Motora/efectos de los fármacos , Muscimol/farmacología , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Núcleo Subtalámico/efectos de los fármacos
6.
Neurosci Res ; 56(3): 300-8, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16973231

RESUMEN

Employing retrograde transsynaptic transport of rabies virus, we investigated the organization of basal ganglia inputs to hindlimb, proximal and distal forelimb, and orofacial representations of the macaque primary motor cortex (MI). Four days after rabies injections into these MI regions, neuronal labeling occurred in the striatum and the subthalamic nucleus (STN) through the cortico-basal ganglia loop circuits. In the striatum, two distinct sets of the labeling were observed: one in the dorsal putamen, and the other in the ventral striatum (ventromedial putamen and nucleus accumbens). The dorsal striatal labeling was somatotopically arranged and its distribution pattern was in good accordance with that of the corticostriatal inputs, such that the hindlimb, orofacial, or forelimb area was located in the dorsal, ventral, or intermediate zone of the putamen, respectively. The distribution pattern of the ventral striatal labeling was essentially the same in all cases. In the STN, the somatotopic arrangement of labeled neurons was in register with that of corticosubthalamic inputs. The present results suggest that the cortico-basal ganglia motor circuits involving the dorsal putamen and the STN may constitute separate closed loops based on the somatotopy, while the ventral striatum provides common multisynaptic projections to all body-part representations in the MI.


Asunto(s)
Vías Aferentes/fisiología , Mapeo Encefálico , Corteza Motora/citología , Corteza Motora/fisiología , Putamen/fisiología , Núcleo Subtalámico/fisiología , Vías Aferentes/anatomía & histología , Animales , Calbindinas , Recuento de Células/métodos , Colina O-Acetiltransferasa/metabolismo , Estimulación Eléctrica/métodos , Cara/inervación , Femenino , Miembro Anterior/inervación , Miembro Posterior/inervación , Inmunohistoquímica/métodos , Macaca , Masculino , Modelos Neurológicos , Neuronas/fisiología , Parvalbúminas/metabolismo , Putamen/anatomía & histología , Proteína G de Unión al Calcio S100/metabolismo , Núcleo Subtalámico/anatomía & histología
7.
J Comp Neurol ; 462(1): 121-38, 2003 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-12761828

RESUMEN

Although there has been an increasing interest in motor functions of the cingulate motor areas, data concerning their input organization are still limited. To address this issue, the patterns of thalamic and cortical inputs to the rostral (CMAr), dorsal (CMAd), and ventral (CMAv) cingulate motor areas were investigated in the macaque monkey. Tracer injections were made into identified forelimb representations of these areas, and the distributions of retrogradely labeled neurons were analyzed in the thalamus and the frontal cortex. The cells of origin of thalamocortical projections to the CMAr were located mainly in the parvicellular division of the ventroanterior nucleus and the oral division of the ventrolateral nucleus (VLo). On the other hand, the thalamocortical neurons to the CMAd/CMAv were distributed predominantly in the VLo and the oral division of the ventroposterolateral nucleus-the caudal division of the ventrolateral nucleus. Additionally, many neurons in the intralaminar nuclear group were seen to project to the cingulate motor areas. Except for their well-developed interconnections, the corticocortical projections to the CMAr and CMAd/CMAv were also distinctively preferential. Major inputs to the CMAr arose from the presupplementary motor area and the dorsal premotor cortex, whereas inputs to the CMAd/CMAv originated not only from these areas but also from the supplementary motor area and the primary motor cortex. The present results indicate that the CMAr and the caudal cingulate motor area (involving both the CMAd and the CMAv) are characterized by distinct patterns of thalamocortical and intracortical connections, reflecting their functional differences.


Asunto(s)
Biotina/análogos & derivados , Giro del Cíngulo/citología , Macaca/anatomía & histología , Corteza Motora/citología , Red Nerviosa/citología , Vías Nerviosas/citología , Tálamo/citología , Animales , Mapeo Encefálico , Dextranos , Estimulación Eléctrica , Giro del Cíngulo/fisiología , Núcleos Talámicos Intralaminares/citología , Núcleos Talámicos Intralaminares/fisiología , Macaca/fisiología , Corteza Motora/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Células Piramidales/citología , Células Piramidales/fisiología , Tálamo/fisiología , Núcleos Talámicos Ventrales/citología , Núcleos Talámicos Ventrales/fisiología , Aglutinina del Germen de Trigo-Peroxidasa de Rábano Silvestre Conjugada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA