Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 66: 153107, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31790903

RESUMEN

BACKGROUND: Gomisin A is a lignan isolated from the hexane of Schisandra chinensis fruit extract with antioxidant properties. Oxidative stress mediated by high glucose is one of the major complications of diabetes mellitus. PURPOSE: This study investigates the role of gomisin A in osteoblast differentiation under high glucose-induced oxidative stress in MC3T3 E1 cells and determines its relationship with heme oxygenase-1 (HO-1) and mitochondrial biogenesis. METHODS: MC3T3 E1 cells were treated by gomisin A following induced by high glucose levels and glucose oxidase to investigate the inhibitory effect of gomisin A against high glucose oxidative stress. Western blot analysis, alizarin red staining, alkaline phosphatase (ALP) activity, analysis of reactive oxygen species (ROS) and confocal microscopy were used to determine mitochondrial biogenesis, oxidative stress, osteoblast differentiation and mineralization. To analyze the role of HO-1, the MC3T3 E1 cells were treated with the HO-1 inhibitor zinc protoporphyrin IX (ZnPP). RESULTS: Gomisin A enhanced the expression of HO-1, increased mitochondrial biogenesis factors (peroxisome proliferator-activated receptor gamma coactivator 1-alpha, nuclear respiratory factor-1, and mitochondrial transcription factor A), antioxidant enzymes (copper-zinc superoxide dismutases and manganese superoxide dismutase), osteoblast differentiation molecules (bone morphogenic protein-2/7, osteoprotegerin and Runt-related transcription factor-2) and mineralization by upregulation of ALP and alizarin red staining, which were decreased by ZnPP and high glucose oxidative stress. Similarly, gomisin A inhibited ROS which was increased by ZnPP and the high glucose-mediated oxidative stress. CONCLUSIONS: The findings demonstrated the antioxidative effects of gomisin A, and its role in mitochondrial biogenesis and osteoblast differentiation. It potentially regulated osteoblast differentiation under high glucose-induced oxidative stress via upregulation of HO-1 and maintenance of mitochondrial homeostasis. Thus, gomisin A may represent a potential therapeutic agent for prevention of bone fragility fractures and implant failure triggered by diabetes.


Asunto(s)
Antioxidantes/farmacología , Ciclooctanos/farmacología , Diabetes Mellitus/tratamiento farmacológico , Dioxoles/farmacología , Glucosa/efectos adversos , Lignanos/farmacología , Osteogénesis/efectos de los fármacos , Schisandra/química , Animales , Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica , Hemo-Oxigenasa 1/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Biogénesis de Organelos , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Estrés Oxidativo/efectos de los fármacos , Protoporfirinas/farmacología , Especies Reactivas de Oxígeno/metabolismo
2.
Phytother Res ; 33(7): 1865-1877, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31074579

RESUMEN

Exercise and healthy diet consumption support healthy aging. Schisandra chinensis (Turcz.) also known as "Baill." has anti-inflammatory and antioxidant properties. However, the role of S. chinensis as an antiaging compound has yet to be demonstrated. This study elucidated the antiaging effect of S. chinensis ethanol-hexane extract (C1) and the effect of C1 treatment on muscle and bone following physical exercise in ovariectomized (OVX) rats. RAW 264.7, human diploid fibroblasts (HDFs), C2C12 myoblasts, bone marrow macrophages, and MC3T3-E1 cells were used for in vitro, and muscle and bone of OVX rats were used for in vivo study to demonstrate the effect of C1. The C1 significantly inhibited the expression of inflammatory molecules, ß-galactosidase activity, and improved antioxidant activity via down-regulation of reactive oxygen species in RAW 264.7 and aged HDF cells. The C1 with exercise improved muscle regeneration in skeletal muscle of OVX rats by promoting mitochondrial biogenesis and autophagy. C1 induced osteoblast differentiation, and C1 + exercise modulated the bone formation and bone resorption in OVX rats. C1 exhibited anti-inflammatory, antioxidant, myogenic, and osteogenic effects. C1 with exercise improved age-related muscle wasting and bone loss. Therefore, S. chinensis may be a potential prevent agent for age-related diseases such as sarcopenia and osteoporosis.


Asunto(s)
Osteoporosis/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Sarcopenia/tratamiento farmacológico , Schisandra , Animales , Línea Celular , Femenino , Frutas , Humanos , Ratones , Ovariectomía , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA