Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Drug Deliv Rev ; 197: 114830, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086917

RESUMEN

Luminescent nanomaterials such as semiconductor nanocrystals (NCs) and quantum dots (QDs) attract much attention to optical detectors, LEDs, photovoltaics, displays, biosensing, and bioimaging. These materials include metal chalcogenide QDs and metal halide perovskite NCs. Since the introduction of cadmium chalcogenide QDs to biolabeling and bioimaging, various metal nanoparticles (NPs), atomically precise metal nanoclusters, carbon QDs, graphene QDs, silicon QDs, and other chalcogenide QDs have been infiltrating the nano-bio interface as imaging and therapeutic agents. Nanobioconjugates prepared from luminescent QDs form a new class of imaging probes for cellular and in vivo imaging with single-molecule, super-resolution, and 3D resolutions. Surface modified and bioconjugated core-only and core-shell QDs of metal chalcogenides (MX; M = Cd/Pb/Hg/Ag, and X = S/Se/Te,), binary metal chalcogenides (MInX2; M = Cu/Ag, and X = S/Se/Te), indium compounds (InAs and InP), metal NPs (Ag, Au, and Pt), pure or mixed precision nanoclusters (Ag, Au, Pt), carbon nanomaterials (graphene QDs, graphene nanosheets, carbon NPs, and nanodiamond), silica NPs, silicon QDs, etc. have become prevalent in biosensing, bioimaging, and phototherapy. While heavy metal-based QDs are limited to in vitro bioanalysis or clinical testing due to their potential metal ion-induced toxicity, carbon (nanodiamond and graphene) and silicon QDs, gold and silica nanoparticles, and metal nanoclusters continue their in vivo voyage towards clinical imaging and therapeutic applications. This review summarizes the synthesis, chemical modifications, optical properties, and bioimaging applications of semiconductor QDs with particular references to metal chalcogenide QDs and bimetallic chalcogenide QDs. Also, this review highlights the toxicity and pharmacokinetics of QD bioconjugates.


Asunto(s)
Grafito , Nanodiamantes , Puntos Cuánticos , Humanos , Puntos Cuánticos/toxicidad , Puntos Cuánticos/química , Silicio/química , Dióxido de Silicio
2.
Chemistry ; 28(71): e202202014, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36224096

RESUMEN

The present study provides design guidance for unique multipotent molecules that sense and generate singlet oxygen (1 O2 ). A rhodamine 6G-aminomethylanthracene-linked donor-acceptor molecule (RA) is designed and synthesized for demonstrating wavelength-dependent functionalities as follows; (i) RA acts as a conventional fluorogenic 1 O2 sensor molecule like the commercially available reagent, singlet oxygen sensor green (SOSG), when it absorbs ultraviolet (UV)-visible light and reacts with 1 O2 . (ii) RA acts as a temporally controlled 1 O2 sensing reagent under the longer wavelength (∼700 nm) photosensitization. RA enters an intermediate state after capturing 1 O2 and does not become strongly fluorescent until it is exposed to UV, blue, or green light. (iii) RA acts as an efficient photosensitizer to generate 1 O2 under green light illumination. The spin-orbit charge transfer mediated intersystem crossing (SOCT-ISC) process achieves this function, and RA shows a potential cancer-killing effect on pancreatic cancer cells. The wavelength-switchable functionalities in RA offer to promise molecular tools to apply 1 O2 in a spatiotemporal manner.


Asunto(s)
Fármacos Fotosensibilizantes , Oxígeno Singlete , Rodaminas , Indicadores y Reactivos , Antracenos
3.
Nanoscale ; 12(43): 22049-22058, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-32895675

RESUMEN

The increased production of semiconductor nanomaterials such as heavy metal quantum dots and perovskites for applications such as in energy harvesting, optoelectronic devices, bioanalysis, phototherapy and consumer health products raises concerns regarding nanotoxicity. After disposal, these materials degrade upon interaction with the environment, such as rain and surface waters, soil and oxygen, and solar irradiation, leading to the release of heavy metal ions in the environment with exposure to aquatic and terrestrial animals and plants, and humans. Researchers are in the early stages of understanding the potential toxicity of such nanomaterials by quantifying the amount of heavy metal ions released due to environmental or biological transformation. Here, we evaluate the toxicity of environmentally transformed nanomaterials by considering PbS quantum dots as a model system. Using metal ion sensors and steady-state fluorescence spectroscopy, we quantify the amount of Pb2+ released by the photochemical etching of quantum dots. Furthermore, with the help of cytotoxicity and comet assays, and DNA gel electrophoresis, we evaluate the adverse effects of the released metal ions into the cultured lung epithelial (H1650), and neuronal (PC12) cells. These studies reveal higher levels of cell proliferation and DNA damage to PC12 cells, suggesting the neurotoxicity of lead due to not only the downregulation of glutathione, elevated levels of reactive oxygen and nitrogen species, and a calcium influx but also the proactivation of activator protein 1 that is correlated with protein kinase c. This research shows the significance of molecular biology studies on different cells and animals to critically understand the health and environmental costs of heavy metal-based engineered nanomaterials.


Asunto(s)
Metales Pesados , Nanoestructuras , Puntos Cuánticos , Animales , Ensayo Cometa , Humanos , Iones , Metales Pesados/toxicidad , Nanoestructuras/toxicidad , Puntos Cuánticos/toxicidad , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA