Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38183184

RESUMEN

Auditory sensory processing is assumed to occur in a hierarchical structure including the primary auditory cortex (A1), superior temporal gyrus, and frontal areas. These areas are postulated to generate predictions for incoming stimuli, creating an internal model of the surrounding environment. Previous studies on mismatch negativity have indicated the involvement of the superior temporal gyrus in this processing, whereas reports have been mixed regarding the contribution of the frontal cortex. We designed a novel auditory paradigm, the "cascade roving" paradigm, which incorporated complex structures (cascade sequences) into a roving paradigm. We analyzed electrocorticography data from six patients with refractory epilepsy who passively listened to this novel auditory paradigm and detected responses to deviants mainly in the superior temporal gyrus and inferior frontal gyrus. Notably, the inferior frontal gyrus exhibited broader distribution and sustained duration of deviant-elicited responses, seemingly differing in spatio-temporal characteristics from the prediction error responses observed in the superior temporal gyrus, compared with conventional oddball paradigms performed on the same participants. Moreover, we observed that the deviant responses were enhanced through stimulus repetition in the high-gamma range mainly in the superior temporal gyrus. These features of the novel paradigm may aid in our understanding of auditory predictive coding.


Asunto(s)
Corteza Auditiva , Electrocorticografía , Humanos , Electroencefalografía , Potenciales Evocados Auditivos/fisiología , Corteza Auditiva/fisiología , Lóbulo Temporal/fisiología , Estimulación Acústica , Percepción Auditiva/fisiología
2.
Appl Psychophysiol Biofeedback ; 46(4): 323-334, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33929674

RESUMEN

Neurofeedback through visual, auditory, or tactile sensations improves cognitive functions and alters the activities of daily living. However, some people, such as children and the elderly, have difficulty concentrating on neurofeedback for a long time. Constant stressless neurofeedback for a long time may be achieved with auditory neurofeedback using music. The primary purpose of this study was to clarify whether music-based auditory neurofeedback increases the power of the alpha wave in healthy subjects. During neurofeedback, white noise was superimposed on classical music, with the noise level inversely correlating with normalized alpha wave power. This was a single-blind, randomized control crossover trial in which 10 healthy subjects underwent, in an assigned order, normal and random feedback (NF and RF), either of which was at least 4 weeks long. Cognitive functions were evaluated before, between, and after each neurofeedback period. The secondary purpose was to assess neurofeedback-induced changes in cognitive functions. A crossover analysis showed that normalized alpha-power was significantly higher in NF than in RF; therefore, music-based auditory neurofeedback facilitated alpha wave induction. A composite category-based analysis of cognitive functions revealed greater improvements in short-term memory in subjects whose alpha-power increased in response to NF. The present study employed a long period of auditory alpha neurofeedback and achieved successful alpha wave induction and subsequent improvements in cognitive functions. Although this was a pilot study that validated a music-based alpha neurofeedback system for healthy subjects, the results obtained are encouraging for those with difficulty in concentrating on conventional alpha neurofeedback.Trial registration: 2018077NI, date of registration: 2018/11/27.


Asunto(s)
Música , Neurorretroalimentación , Actividades Cotidianas , Anciano , Niño , Cognición/fisiología , Electroencefalografía/métodos , Humanos , Neurorretroalimentación/métodos , Proyectos Piloto , Método Simple Ciego
3.
Cereb Cortex ; 31(10): 4518-4532, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-33907804

RESUMEN

Gamma oscillations are physiological phenomena that reflect perception and cognition, and involve parvalbumin-positive γ-aminobutyric acid-ergic interneuron function. The auditory steady-state response (ASSR) is the most robust index for gamma oscillations, and it is impaired in patients with neuropsychiatric disorders such as schizophrenia and autism. Although ASSR reduction is known to vary in terms of frequency and time, the neural mechanisms are poorly understood. We obtained high-density electrocorticography recordings from a wide area of the cortex in 8 patients with refractory epilepsy. In an ASSR paradigm, click sounds were presented at frequencies of 20, 30, 40, 60, 80, 120, and 160 Hz. We performed time-frequency analyses and analyzed intertrial coherence, event-related spectral perturbation, and high-gamma oscillations. We demonstrate that the ASSR is globally distributed among the temporal, parietal, and frontal cortices. The ASSR was composed of time-dependent neural subcircuits differing in frequency tuning. Importantly, the frequency tuning characteristics of the late-latency ASSR varied between the temporal/frontal and parietal cortex, suggestive of differentiation along parallel auditory pathways. This large-scale survey of the cortical ASSR could serve as a foundation for future studies of the ASSR in patients with neuropsychiatric disorders.


Asunto(s)
Corteza Cerebral/fisiopatología , Electrocorticografía/métodos , Ritmo Gamma/fisiología , Estimulación Acústica , Adolescente , Adulto , Corteza Cerebral/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Electrocorticografía/instrumentación , Potenciales Evocados/fisiología , Potenciales Evocados Auditivos , Femenino , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiopatología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA