Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Biol Regul ; 78: 100752, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32992234

RESUMEN

Bone provides skeletal support and functions as an endocrine organ by producing osteocalcin, whose uncarboxylated form (GluOC) increases the metabolism of glucose and lipid by activating its putative G protein-coupled receptor (family C group 6 subtype A). Low doses (≤10 ng/ml) of GluOC induce the expression of adiponectin, adipose triglyceride lipase and peroxisome proliferator-activated receptor γ, and promote active phosphorylation of lipolytic enzymes such as perilipin and hormone-sensitive lipase via the cAMP-PKA-Src-Rap1-ERK-CREB signaling axis in 3T3-L1 adipocytes. Administration of high-dose (≥20 ng/ml) GluOC induces programmed necrosis (necroptosis) through a juxtacrine mechanism triggered by the binding of Fas ligand, whose expression is induced by forkhead box O1, to Fas that is expressed in adjacent adipocytes. Furthermore, expression of adiponectin and adipose triglyceride lipase in adipocytes is triggered in the same manner as following low-dose GluOC stimulation; these effects protect mice from diet-induced accumulation of triglycerides in hepatocytes and consequent liver injury through the upregulation of nuclear translocation of nuclear factor-E2-related factor-2, expression of antioxidant enzymes, and inhibition of the c-Jun N-terminal kinase pathway. Evaluation of these molecular mechanisms leads us to consider that GluOC might have potential as a treatment for lipid metabolism disorders. Indeed, there have been many reports demonstrating the negative correlation between serum osteocalcin levels and obesity or non-alcoholic fatty liver disease, a common risk factor for which is dyslipidemia in humans. The present review summarizes the effects of GluOC on lipid metabolism as well as its possible therapeutic application for metabolic diseases including obesity and dyslipidemia.


Asunto(s)
Tejido Adiposo/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Osteocalcina/fisiología , Adiponectina/metabolismo , Tejido Adiposo/citología , Animales , Humanos , Ratones , Necroptosis , Osteocalcina/metabolismo , Transducción de Señal
2.
Cell Death Dis ; 9(12): 1194, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30546087

RESUMEN

The uncarboxylated form of osteocalcin (GluOC) regulates glucose and lipid metabolism in mice. We previously showed that low-dose (≤10 ng/ml) GluOC induces the expression of adiponectin and peroxisome proliferator-activated receptor γ (PPARγ) via a cAMP-PKA-ERK-CREB signaling pathway in 3T3-L1 adipocytes. We also noticed that high-dose (≥20 ng/ml) GluOC inhibits the expression of adiponectin and PPARγ in these cells. We have here explored the mechanism underlying these effects of high-dose GluOC. High-dose GluOC triggered morphological changes in 3T3-L1 adipocytes suggestive of the induction of cell death. It activated the putative GluOC receptor GPRC6A and thereby induced the production of cAMP and activation of protein kinase A (PKA), similar to signaling by low-dose GluOC with the exception that the catalytic subunit of PKA also entered the nucleus. Cytosolic PKA induced phosphorylation of cAMP response element-binding protein (CREB) at serine-133 via extracellular signal-regulated kinase (ERK). Nuclear PKA appeared to mediate the inhibitory phosphorylation of salt-inducible kinase 2 (SIK2) at serine-358 and thereby to alleviate the inhibitory phosphorylation of the CREB co-activator p300 at serine-89. The activation of CREB and p300 resulted in increased expression of the transcription factor FoxO1 and consequent upregulation of Fas ligand (FasL) at the plasma membrane. The interaction of FasL with Fas on neighboring adipocytes triggered the phosphorylation at threonine-357/serine-358 and homotrimerization of mixed-lineage kinase domain-like protein (MLKL), a key regulator of necroptosis, as well as Ca2+ influx via transient receptor potential melastatin 7 (TRPM7), the generation of reactive oxygen species and lipid peroxides, and dephosphorylation of dynamin-related protein 1 (DRP1) at serine-637, resulting in mitochondrial fragmentation. Together, our results indicate that high-dose GluOC triggers necroptosis through upregulation of FasL at the plasma membrane in a manner dependent of activation of CREB-p300, followed by the activation of Fas signaling in neighboring adipocytes.


Asunto(s)
Muerte Celular/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína Ligando Fas/genética , Receptor fas/genética , Factores de Transcripción p300-CBP/genética , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adiponectina/genética , Animales , Muerte Celular/efectos de los fármacos , Membrana Celular/genética , AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Dinaminas/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Osteocalcina/farmacología , Fosforilación/efectos de los fármacos , Canales Catiónicos TRPM/genética
3.
Am J Physiol Endocrinol Metab ; 310(8): E662-E675, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-26884384

RESUMEN

Uncarboxylated osteocalcin (GluOC), a bone-derived hormone, regulates energy metabolism by stimulating insulin secretion, pancreatic ß-cell proliferation, and adiponectin expression in adipocytes. Previously, we showed that long-term intermittent or daily oral administration of GluOC reduced the fasting blood glucose level, improved glucose tolerance, and increased the fasting serum insulin concentration as well as pancreatic ß-cell area in female mice fed a normal or high-fat, high-sucrose diet. We have now performed similar experiments with male mice and found that such GluOC administration induced glucose intolerance, insulin resistance, and adipocyte hypertrophy in those fed a high-fat, high-sucrose diet. In addition, GluOC increased the circulating concentration of testosterone and reduced that of adiponectin in such mice. These phenotypes were not observed in male mice fed a high-fat, high-sucrose diet after orchidectomy, but they were apparent in orchidectomized male mice or intact female mice that were fed such a diet and subjected to continuous testosterone supplementation. Our results thus reveal a sex difference in the effects of GluOC on glucose homeostasis. Given that oral administration of GluOC has been considered a potentially safe and convenient option for the treatment or prevention of metabolic disorders, this sex difference will need to be taken into account in further investigations.


Asunto(s)
Adipocitos/efectos de los fármacos , Glucemia/efectos de los fármacos , Dieta Alta en Grasa , Sacarosa en la Dieta/farmacología , Intolerancia a la Glucosa/metabolismo , Resistencia a la Insulina , Osteocalcina/farmacología , Edulcorantes/farmacología , Adipocitos/patología , Adiponectina/metabolismo , Andrógenos/farmacología , Animales , Glucemia/metabolismo , Femenino , Intolerancia a la Glucosa/inducido químicamente , Prueba de Tolerancia a la Glucosa , Homeostasis/efectos de los fármacos , Hipertrofia/inducido químicamente , Immunoblotting , Insulina/sangre , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Orquiectomía , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores Sexuales , Testosterona/metabolismo , Testosterona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA