Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958754

RESUMEN

The external application of double-stranded RNA (dsRNA) has recently been developed as a non-transgenic approach for crop protection against pests and pathogens. This novel and emerging approach has come to prominence due to its safety and environmental benefits. It is generally assumed that the mechanism of dsRNA-mediated antivirus RNA silencing is similar to that of natural RNA interference (RNAi)-based defence against RNA-containing viruses. There is, however, no direct evidence to support this idea. Here, we provide data on the high-throughput sequencing (HTS) analysis of small non-coding RNAs (sRNA) as hallmarks of RNAi induced by infection with the RNA-containing potato virus Y (PVY) and also by exogenous application of dsRNA which corresponds to a fragment of the PVY genome. Intriguingly, in contrast to PVY-induced production of discrete 21 and 22 nt sRNA species, the externally administered PVY dsRNA fragment led to generation of a non-canonical pool of sRNAs, which were present as ladders of ~18-30 nt in length; suggestive of an unexpected sRNA biogenesis pathway. Interestingly, these non-canonical sRNAs are unable to move systemically and also do not induce transitive amplification. These findings may have significant implications for further developments in dsRNA-mediated crop protection.


Asunto(s)
Potyvirus , ARN Pequeño no Traducido , Solanum tuberosum , ARN Bicatenario/genética , Solanum tuberosum/genética , Interferencia de ARN , Potyvirus/genética
2.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37834280

RESUMEN

Potato virus Y, an important viral pathogen of potato, has several genetic variants and geographic distributions which could be affected by environmental factors, aphid vectors, and reservoir plants. PVY is transmitted to virus-free potato plants by aphids and passed on to the next vegetative generations through tubers, but the effects of tuber transmission in PVY is largely unknown. By using high-throughput sequencing, we investigated PVY populations transmitted to potato plants by aphids in different climate zones of Russia, namely the Moscow and Astrakhan regions. We analyzed sprouts from the tubers produced by field-infected plants to investigate the impact of tuber transmission on PVY genetics. We found a significantly higher diversity of PVY isolates in the Astrakhan region, where winters are shorter and milder and summers are warmer compared to the Moscow region. While five PVY types, NTNa, NTNb, N:O, N-Wi, and SYR-I, were present in both regions, SYRI-II, SYRI-III, and 261-4 were only found in the Astrakhan region. All these recombinants were composed of the genome sections derived from PVY types O and N, but no full-length sequences of such types were present. The composition of the PVY variants in the tuber sprouts was not always the same as in their parental plants, suggesting that tuber transmission impacts PVY genetics.


Asunto(s)
Áfidos , Potyvirus , Solanum tuberosum , Animales , Potyvirus/genética , Enfermedades de las Plantas , Solanum tuberosum/genética , Federación de Rusia , Genoma Viral , Áfidos/genética
3.
Langmuir ; 30(20): 5982-8, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24784347

RESUMEN

We report the synthesis and characterization of amorphous iron oxide nanoparticles from iron salts in aqueous extracts of monocotyledonous (Hordeum vulgare) and dicotyledonous (Rumex acetosa) plants. The nanoparticles were characterized by TEM, absorbance spectroscopy, SAED, EELS, XPS, and DLS methods and were shown to contain mainly iron oxide and iron oxohydroxide. H. vulgare extracts produced amorphous iron oxide nanoparticles with diameters of up to 30 nm. These iron nanoparticles are intrinsically unstable and prone to aggregation; however, we rendered them stable in the long term by addition of 40 mM citrate buffer pH 3.0. In contrast, amorphous iron oxide nanoparticles (diameters of 10-40 nm) produced using R. acetosa extracts are highly stable. The total protein content and antioxidant capacity are similar for both extracts, but pH values differ (H. vulgare pH 5.8 vs R. acetosa pH 3.7). We suggest that the presence of organic acids (such oxalic or citric acids) plays an important role in the stabilization of iron nanoparticles, and that plants containing such constituents may be more efficacious for the green synthesis of iron nanoparticles.


Asunto(s)
Compuestos Férricos/química , Hordeum/química , Nanopartículas/química , Extractos Vegetales/química , Hojas de la Planta/química , Rumex/química
4.
J Gen Virol ; 89(Pt 3): 829-838, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18272775

RESUMEN

Potato virus A (PVA) particles were purified by centrifugation through a 30 % sucrose cushion and the pellet (P1) was resuspended and sedimented through a 5-40 % sucrose gradient. The gradient separation resulted in two different virus particle populations: a virus fraction (F) that formed a band in the gradient and one that formed a pellet (P2) at the bottom of the gradient. All three preparations contained infectious particles that retained their integrity when visualized by electron microscopy (EM). Western blotting of the P1 particles revealed that the viral RNA helicase, cylindrical inclusion protein (CI), co-purified with virus particles. This result was confirmed with co-immunoprecipitation experiments. CI was detected in P2 particle preparations, whereas F particles were devoid of detectable amounts of CI. ATPase activity was detected in all three preparations with the greatest amount in P2. Results from immunogold-labelling EM experiments suggested that a fraction of the CI present in the preparations was localized to one end of the virion. Atomic force microscopy (AFM) studies showed that P1 and P2 contained intact particles, some of which had a protruding tip structure at one end, whilst F virions were less stable and mostly appeared as beaded structures under the conditions of AFM. The RNA of the particles in F was translated five to ten times more efficiently than RNA from P2 particles when these preparations were subjected to translation in wheat-germ extracts. The results are discussed in the context of a model for CI-mediated functions.


Asunto(s)
Enfermedades de las Plantas/virología , Potyvirus/metabolismo , Solanum tuberosum/virología , Proteínas Virales/metabolismo , Virión/aislamiento & purificación , Virión/metabolismo , Secuencia de Aminoácidos , Centrifugación por Gradiente de Densidad , Inmunoprecipitación , Microscopía de Fuerza Atómica , Datos de Secuencia Molecular , Mapeo Peptídico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Proteínas Virales/química , Virión/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA