Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 94(31): 11038-11046, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35901235

RESUMEN

Protein networks can be assembled in vitro for basic biochemistry research, drug screening, and the creation of artificial cells. Two standard methodologies are used: manual pipetting and pipetting robots. Manual pipetting has limited throughput in the number of input reagents and the combination of reagents in a single sample. While pipetting robots are evident in improving pipetting efficiency and saving hands-on time, their liquid handling volume usually ranges from a few to hundreds of microliters. Microfluidic methods have been developed to minimize the reagent consumption and speed up screening but are challenging in multifactorial protein studies due to their reliance on complex structures and labeling dyes. Here, we engineered a new impact-printing-based methodology to generate printed microdroplet arrays containing water-in-oil droplets. The printed droplet volume was linearly proportional (R2 = 0.9999) to the single droplet number, and each single droplet volume was around 59.2 nL (coefficient of variation = 93.8%). Our new methodology enables the study of protein networks in both membrane-unbound and -bound states, without and with anchor lipids DGS-NTA(Ni), respectively. The methodology is demonstrated using a subnetwork of mitogen-activated protein kinase (MAPK). It takes less than 10 min to prepare 100 different droplet-based reactions, using <1 µL reaction volume at each reaction site. We validate the kinase (ATPase) activity of MEK1 (R4F)* and ERK2 WT individually and together under different concentrations, without and with the selective membrane attachment. Our new methodology provides a reagent-saving, efficient, and flexible way for protein network research and related applications.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Evaluación Preclínica de Medicamentos , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Impresión Tridimensional , Agua/química
2.
Nat Commun ; 11(1): 3138, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561745

RESUMEN

Synthetic biology has focused on engineering genetic modules that operate orthogonally from the host cells. A synthetic biological module, however, can be designed to reprogram the host proteome, which in turn enhances the function of the synthetic module. Here, we apply this holistic synthetic biology concept to the engineering of cell-free systems by exploiting the crosstalk between metabolic networks in cells, leading to a protein environment more favorable for protein synthesis. Specifically, we show that local modules expressing translation machinery can reprogram the bacterial proteome, changing the expression levels of more than 700 proteins. The resultant feedback generates a cell-free system that can synthesize fluorescent reporters, protein nanocages, and the gene-editing nuclease Cas9, with up to 5-fold higher expression level than classical cell-free systems. Our work demonstrates a holistic approach that integrates synthetic and systems biology concepts to achieve outcomes not possible by only local, orthogonal circuits.


Asunto(s)
Proteínas Bacterianas/genética , Ingeniería Metabólica/métodos , Proteoma/genética , Biología Sintética/métodos , Proteínas Bacterianas/metabolismo , Sistema Libre de Células/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Redes Reguladoras de Genes , Redes y Vías Metabólicas/genética , Biosíntesis de Proteínas/genética , Proteoma/metabolismo
3.
Nat Biomed Eng ; 2(2): 58-59, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-31015622
4.
Mol Syst Biol ; 8: 617, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23047527

RESUMEN

The inoculum effect (IE) refers to the decreasing efficacy of an antibiotic with increasing bacterial density. It represents a unique strategy of antibiotic tolerance and it can complicate design of effective antibiotic treatment of bacterial infections. To gain insight into this phenomenon, we have analyzed responses of a lab strain of Escherichia coli to antibiotics that target the ribosome. We show that the IE can be explained by bistable inhibition of bacterial growth. A critical requirement for this bistability is sufficiently fast degradation of ribosomes, which can result from antibiotic-induced heat-shock response. Furthermore, antibiotics that elicit the IE can lead to 'band-pass' response of bacterial growth to periodic antibiotic treatment: the treatment efficacy drastically diminishes at intermediate frequencies of treatment. Our proposed mechanism for the IE may be generally applicable to other bacterial species treated with antibiotics targeting the ribosomes.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Cloranfenicol/farmacología , Recuento de Colonia Microbiana , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Respuesta al Choque Térmico/efectos de los fármacos , Kanamicina/farmacología , Cinética , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Proteolisis/efectos de los fármacos , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA