Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microbiol Res ; 283: 127688, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479233

RESUMEN

Plant secondary metabolites possess a wide range of pharmacological activities and play crucial biological roles. They serve as both a defense response during pathogen attack and a valuable drug resource. The role of microorganisms in the regulation of plant secondary metabolism has been widely recognized. The addition of specific microorganisms can increase the synthesis of secondary metabolites, and their beneficial effects depend on environmental factors and plant-related microorganisms. This article summarizes the impact and regulatory mechanisms of different microorganisms on the main secondary metabolic products of plants. We emphasize the mechanisms by which microorganisms regulate hormone levels, nutrient absorption, the supply of precursor substances, and enzyme and gene expression to promote the accumulation of plant secondary metabolites. In addition, the possible negative feedback regulation of microorganisms is discussed. The identification of additional unknown microbes and other driving factors affecting plant secondary metabolism is essential. The prospects for further analysis of medicinal plant genomes and the establishment of a genetic operation system for plant secondary metabolism research are proposed. This study provides new ideas for the use of microbial resources for biological synthesis research and the improvement of crop anti-inverse traits for the use of microbial resources.


Asunto(s)
Plantas Medicinales , Metabolismo Secundario
2.
Environ Res ; 231(Pt 3): 116258, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37268201

RESUMEN

Metal oxide modified biochars are increasingly being used for intensive agricultural soil remediation, but there has been limited research on their effects on soil phosphorus transformation, soil enzyme activity, microbe community and plant growth. Two highly-performance metal oxides biochars (FeAl-biochar and MgAl-biochar) were investigated for their effects on soil phosphorus availability, fractions, enzyme activity, microbe community and plant growth in two typical intensive fertile agricultural soils. Adding raw biochar to acidic soil increased NH4Cl-P content, while metal oxide biochar reduced NH4Cl-P content by binding to phosphorus. Original biochar slightly reduced Al-P content in lateritic red soil, while metal oxide biochar increased it. LBC and FBC significantly reduced Ca2-P and Ca8-P properties while improving Al-P and Fe-P, respectively. Inorganic phosphorus-solubilizing bacteria increased in abundance with biochar amendment in both soil types, and biochar addition affected soil pH and phosphorus fractions, leading to changes in bacterial growth and community structure. Biochar's microporous structure allowed it to adsorb phosphorus and aluminum ions, making them more available for plants and reducing leaching. In calcareous soils, biochar additions may dominantly increase the Ca (hydro)oxides bounded P or soluble P instead of Fe-P or Al-P through biotic pathways, favoring plant growth. The recommendations for using metal oxides biochar for fertile soil management include using LBC biochar for optimal performance in both P leaching reduction and plant growth promotion, with the mechanisms differing depending on soil type. This research highlights the potential of metal oxide modified biochars for improving soil fertility and reducing phosphorus leaching, with specific recommendations for their use in different soil types.


Asunto(s)
Contaminantes del Suelo , Suelo , Suelo/química , Fósforo , Carbón Orgánico/química , Óxidos , Contaminantes del Suelo/análisis
3.
Sci Total Environ ; 843: 157037, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35777556

RESUMEN

Biochar (BC) as a increasing widely adopted soil amendments showed potential threat to soil P leaching, but the relevant mechanisms were not clear enough and relevant strategy should be proposed to address the P leaching induced by BC application. In this study, effects of ordinary corn straw BC, and a fabricated Mg/Al-LDHs modified biochar (LBC) on soil P availability, adsorption, fraction and mobility were compared and investigated by conducting the column and incubation experiments at biochar to soil rate of 1 %, 2 % and 4 % (w/w). Chemical sequential extraction methods and various solid-state method (i.e., three-dimensional excitation emission matrix (EEM), x-ray diffraction (XRD), scanning electron micrograph (SEM) and P K-edge X-ray absorption near edge structure (XANES)) were utilized to give deep insights into the P mobilization and immobilization mechanisms by respectively applying the BC and LBC. Results of incubation experiments showed that applying the LBC reduced the labile P with significant CaP transformation to Al-retained P, while ordinary BC promoted the Fe/Al-P transformation to labile dibasic calcium phosphate and monobasic calcium phosphate evidenced by the EEM analysis, in-situ XANES investigation and chemical sequential extraction methods. Results of phosphatase and microbial analyses indicated that the decreased labile P after 30 days' incubation and the mitigated P leaching in LBC treatment were dominantly ascribed to abiotic processes of inorganic P transformation and (de)sorption. This research gave deep insights into abiotic and biotic processes of ordinary biochar promoting soil P leaching, and important implications for applying engineered biochar in reducing P leaching and improving soil productivity.


Asunto(s)
Contaminantes del Suelo , Suelo , Carbón Orgánico/química , Óxidos , Fósforo/química , Suelo/química , Contaminantes del Suelo/análisis
4.
Plant Physiol Biochem ; 168: 211-220, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34649024

RESUMEN

Many studies have revealed that SPX (SYG1/Pho81/XPR1) family genes play a key role in signal transduction related to phosphorus (P) deficiency in plants. Here, we identified 33 SPX gene family members in maize through genome-wide analysis and classified them into 4 subfamilies according to SPX structural characteristics (SPX, SPX-MFS, SPX-EXS and SPX-RING). The promoter regions of ZmSPXs are rich in biotic/abiotic-related stress elements. The quantitative real-time PCR analysis of 33 ZmSPXs revealed that all members except for ZmSPX3 of the SPX subfamily were significantly induced under P-deficient conditions, especially ZmSPX4.1 and ZmSPX4.2, which showed strong responses to low P stress and exhibited remarkably different expression patterns in low Pi sensitive and insensitive cultivars of maize. These results suggested that the SPX subfamily might play pivotal roles in P stress sensing and response. Experimental observations of subcellular localization in maize protoplasts indicated the following results, implying multiple roles in cell metabolism: ZmSPX2, ZmSPX5 and ZmSPX6 localized in the nucleus; ZmSPX1 and ZmSPX3 localized in the nucleus and cytoplasm; and ZmSPX4.2 localized in the chloroplast. A Y2H assay suggested that ZmPHR1 could interact with ZmSPX3, ZmSPX4.2, ZmSPX5, and ZmSPX6, indicating the involvement of these proteins in the P stress response in a ZmPHR1-mediated manner.


Asunto(s)
Fosfatos , Zea mays , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Fósforo/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Zea mays/genética , Zea mays/metabolismo
5.
New Phytol ; 226(1): 142-155, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31745997

RESUMEN

Root hair development is crucial for phosphate absorption, but how phosphorus deficiency affects root hair initiation and elongation remains unclear. We demonstrated the roles of auxin efflux carrier PIN-FORMED2 (PIN2) and phospholipase D (PLD)-derived phosphatidic acid (PA), a key signaling molecule, in promoting root hair development in Arabidopsis thaliana under a low phosphate (LP) condition. Root hair elongation under LP conditions was greatly suppressed in pin2 mutant or under treatment with a PLDζ2-specific inhibitor, revealing that PIN2 and polar auxin transport and PLDζ2-PA are crucial in LP responses. PIN2 was accumulated and degraded in the vacuole under a normal phosphate (NP) condition, whereas its vacuolar accumulation was suppressed under the LP or NP plus PA conditions. Vacuolar accumulation of PIN2 was increased in pldζ2 mutants under LP conditions. Increased or decreased PIN2 vacuolar accumulation is not observed in sorting nexin1 (snx1) mutant, indicating that vacuolar accumulation of PIN2 is mediated by SNX1 and the relevant trafficking process. PA binds to SNX1 and promotes its accumulation at the plasma membrane, especially under LP conditions, and hence promotes root hair development by suppressing the vacuolar degradation of PIN2. We uncovered a link between PLD-derived PA and SNX1-dependent vacuolar degradation of PIN2 in regulating root hair development under phosphorus deficiency.


Asunto(s)
Proteínas de Arabidopsis , Fosfolipasa D , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos , Ácidos Fosfatidicos , Fosfolipasa D/genética , Fósforo , Raíces de Plantas/fisiología , Vacuolas
6.
Zhongguo Zhong Yao Za Zhi ; 33(16): 1955-9, 2008 Aug.
Artículo en Chino | MEDLINE | ID: mdl-19086627

RESUMEN

OBJECTIVE: To study the absorption, translocation and accumulation of N, P and K on Achyranthes bidentata. METHOD: The contents of N, P and K were determined by mean of sulfuric acid-hydrogen peroxide assimilating method, vanadium-ammonium molybdate colorimetric method and flame photometric method, respectively. RESULT: The contents of N, P and K in the plant were decreasing during the growth period. The absorption rates of the three nutrients by A. Bidentata showed double-peak curves in the whole growth period, maximum absorption rate appeared in the middle ten days of October. About 8.59 kg of N, 1.36 kg of P and 7.40 kg of K were needed to produce each 100 kg root. CONCLUSION: The key nutrients absorption period is in the first ten days of September and in the middle ten days of October.


Asunto(s)
Achyranthes/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Potasio/metabolismo , Transporte Biológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA