RESUMEN
BACKGROUND: Sugar beet (Beta vulgaris L.) is an economically essential sugar crop worldwide. Its agronomic traits are highly diverse and phenotypically plastic, influencing taproot yield and quality. The National Beet Medium-term Gene Bank in China maintains more than 1700 beet germplasms with diverse countries of origin. However, it lacks detailed genetic background associated with morphological variability and diversity. RESULTS: Here, a comprehensive genome-wide association study (GWAS) of 13 agronomic traits was conducted in a panel of 977 sugar beet accessions. Almost all phenotypic traits exhibited wide genetic diversity and high coefficient of variation (CV). A total of 170,750 high-quality single-nucleotide polymorphisms (SNPs) were obtained using the genotyping-by-sequencing (GBS). Neighbour-joining phylogenetic analysis, principal component analysis, population structure and kinship showed no obvious relationships among these genotypes based on subgroups or regional sources. GWAS was carried out using a mixed linear model, and 159 significant associations were detected for these traits. Within the 25 kb linkage disequilibrium decay of the associated markers, NRT1/PTR FAMILY 6.3 (BVRB_5g097760); nudix hydrolase 15 (BVRB_8g182070) and TRANSPORT INHIBITOR RESPONSE 1 (BVRB_8g181550); transcription factor MYB77 (BVRB_2g023500); and ethylene-responsive transcription factor ERF014 (BVRB_1g000090) were predicted to be strongly associated with the taproot traits of root groove depth (RGD); root shape (RS); crown size (CS); and flesh colour (FC), respectively. For the aboveground traits, UDP-glycosyltransferase 79B6 (BVRB_9g223780) and NAC domain-containing protein 7 (BVRB_5g097990); F-box protein At1g10780 (BVRB_6g140760); phosphate transporter PHO1 (BVRB_3g048660); F-box protein CPR1 (BVRB_8g181140); and transcription factor MYB77 (BVRB_2g023500) and alcohol acyltransferase 9 (BVRB_2g023460) might be associated with the hypocotyl colour (HC); plant type (PT); petiole length (PL); cotyledon size (C); and fascicled leaf type (FLT) of sugar beet, respectively. AP-2 complex subunit mu (BVRB_5g106130), trihelix transcription factor ASIL2 (BVRB_2g041790) and late embryogenesis abundant protein 18 (BVRB_5g106150) might be involved in pollen quantity (PQ) variation. The candidate genes extensively participated in hormone response, nitrogen and phosphorus transportation, secondary metabolism, fertilization and embryo maturation. CONCLUSIONS: The genetic basis of agronomical traits is complicated in heterozygous diploid sugar beet. The putative valuable genes found in this study will help further elucidate the molecular mechanism of each phenotypic trait for beet breeding.
Asunto(s)
Beta vulgaris , Estudio de Asociación del Genoma Completo , Filogenia , Fitomejoramiento , Factores de Transcripción , Antioxidantes , Variación GenéticaRESUMEN
Leaf spot disease caused by Cercospora beticola Sacc. is the most damaging foliar disease threatening sugar beet production worldwide. The wide spread of disease incurs a reduction of yield and economic losses. The in-depth knowledge of disease epidemiology and virulence factor of pathogen is crucial and basic for preventing fungal disease. The integrated control strategies are needed for an efficient and sustainable disease management. The rotation of fungicides and crop could reduce the initial inoculum and delay the emergence of resistant pathogens. Spraying fungicides under the guide of forecasting models and molecular detecting techniques may hinder the onset of disease prevalence. The resistant varieties of sugar beet to cercospora leaf spot could be obtained by combining classical and molecular breeding methods. More effective approaches are supposed to develop for prevention and control for fungal disease of sugar beet.
Asunto(s)
Ascomicetos , Beta vulgaris , Fungicidas Industriales , Cercospora , Enfermedades de las Plantas/microbiología , AzúcaresRESUMEN
Sugar beet is a main sugar crop worldwide that often faces drought stress. The identification of drought tolerance of sugar beet germplasms is beneficial for breeding, but the research about it has been rarely reported. In this study, the drought tolerance of germplasms 92005-1, 94002-2 and 92021-1-1 was tested under simulated conditions. Seven days and 9% PEG treatment were the optimal conditions for evaluation, under which more phenotypic indicators showed significant difference in drought tolerance coefficient. The objective weighting and membership function method were established for evaluating the drought tolerance of different sugar beet germplasms. Drought stress decreased the biomass of leaves and roots of sugar beet germplasms. The drought-sensitive germplasm responded faster for leaf weight, root weight, plant height and root length. These indicators declined more significantly under long-term and severe stress. Increasing the root-shoot ratio and proline content were universal strategies of sugar beet germplasms to overcome drought stress. The drought-tolerant germplasms held higher peroxidase activity and better ability to scavenge reactive oxygen for preventing the damage.
Asunto(s)
Beta vulgaris , Resistencia a la Sequía , Sequías , AntioxidantesRESUMEN
Nitrogen (N) is an essential element required for sugar beet growth. Sugar beets with low N (LN) tolerance and high N use efficiency are excellent materials for breeding. Here, we comprehensively evaluated the morphological and physiological responses of nine sugar beet genotypes to LN supply. It was found that 0.5 mmol·L-1 N (LN) significantly influenced the performance of leaves and the topology of roots by reducing the bioproduction of chlorophyll a (Chl a) and soluble protein (SP) and the accumulation of N in leaves and roots (LNA and RNA), thus differentially restricting the growth (hypocotyl diameter, HD; root length, RL) and biomass (leaf and root fresh weight; LFW and RFW; leaf dry weight, LDW) of these sugar beets. Principal component and cluster analyses showed that 780016B/12 superior (F) exhibited excellent tolerance to LN; it had higher SOD activity (62.70%) and APX activity (188.92%) and a higher proline content (131.82%) than 92011 (G, LN sensitive). These attributes helped 780016B/12 superior (F) to better endure LN stress, and the morphology and N distribution changed to adapt to N deficiency, such that the root length increased by 112.48%, leaf area increased by 101.23%, and leaf nitrogen accumulation reached a peak of 14.13 g/plant. It seems that LN-tolerant genotypes increased their root length and surface area by reducing the difference in biomass, thereby expanding the contact between roots and soil, which was conducive to the absorption of nutrients (N) by sugar beets and helped distribute more assimilation products to the roots.
Asunto(s)
Beta vulgaris , Nitrógeno , Nitrógeno/metabolismo , Beta vulgaris/metabolismo , Clorofila A/metabolismo , Raíces de Plantas/metabolismo , Azúcares/metabolismoRESUMEN
To clarify the mechanism of the response of sugar beet (Beta vulgaris L.) to cadmium (Cd) stress, this study investigated changes in the phenotype, physiological indexes, and subcellular structure of B. vulgaris under Cd treatment and the transcriptional pattern of the BvHIPP24 gene (a heavy metal-associated isoprenylated plant protein involved in heavy metal detoxification). The plant height and shoot and root growth of B. vulgaris seedlings were inhibited to some extent under 0.5 and 1 mM Cd, with gradually wilting and yellowing of leaves and dark brown roots. When the Cd concentration was increased, malondialdehyde content and the activities of peroxidase, superoxide dismutase, and glutathione S-transferase increased differentially. qPCR indicated that the expression of BvHIPP24 was induced by different concentrations of Cd. Although transmission electron microscopy revealed damage to nuclei, mitochondria, and chloroplasts, B. vulgaris exhibited strong adaptability to 0.5 mM Cd according to a comprehensive analysis using the membership function. The results showed that B. vulgaris may reduce cell damage and improve its Cd tolerance by regulating functional gene expression and antioxidant enzymes. This study increases our understanding of the Cd-tolerance mechanism of B. vulgaris and provides insights into the use of B. vulgaris in Cd bioremediation.
Sugar beet is a novel energy crop with superior characteristics for both heavy metal phytoremediation and biomass energy development. This work is the first to investigate both the morphological, physiological, and ultrastructural response of sugar beet to cadmium stress and the induction of a functional metallochaperone gene by cadmium. This study explains the cadmium tolerance mechanism of sugar beet based on a comprehensive evaluation and provides an important theoretical basis for further application of beet in heavy metal bioremediation.
Asunto(s)
Beta vulgaris , Metales Pesados , Cadmio/toxicidad , Cadmio/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Biodegradación Ambiental , Expresión Génica , Azúcares/metabolismo , Azúcares/farmacología , Raíces de PlantasRESUMEN
Understanding the response and tolerance mechanisms of nitrogen (N) stress is essential for the taproot plant of sugar beet. Hence, in this study, low (0.5 and 3 mmol/L; N0.5 and N3), moderate (5 mmol/L; N5; control) and high (10 and 12 mmol/L; N10 and N12) N were imposed to sugar beet to comparatively investigate the growth and physiological changes, and expression pattern of the gene involving ammonia transporting at different seedling stages. The results showed that, different from N5 which could induce maximum biomass of beet seedlings, low N was more likely to inhibit the growth of beet seedlings than high N treatments. Morphological differences and adverse factors increased significantly with extension of stress time, but sugar beet seedlings displayed a variety of physical responses to different N concentrations to adapt to N abnormal. At 14 d, the chlorophyll content, leaf and root surface area, total dry weight and nitrogen content of seedlings treated with N0.5 decreased 15.83%, 53.65%, 73.94%, 78.08% and 24.88% respectively, compared with N12; however, the root shoot ratio increased significantly as well as superoxide dismutase (SOD), peroxidase (POD), glutamine synthetase (GS) activity and malondialdehyde (MDA) and proline content, especially in root. The expression of BvAMT1.2 was also regulated in an N concentration-dependent manner, and was mainly involved in the tolerance of beet leaves to N stress, which significantly positively correlated to GS activity on the basis of its high affinity to N. It can be deduced that the stored nutrients under low N could only maintain relatively stable root growth, and faced difficulty in being transported to the shoots. Sugar beet was relatively resilient to N0.5 stress according to the mean affiliation function analysis. These results provide a theoretical basis for the extensive cultivation of sugar beet in N-stressed soil.