Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytother Res ; 38(5): 2154-2164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38391003

RESUMEN

Proanthocyanidins (PCs) are natural antioxidant polyphenols and their effect on the regulation of blood lipids is still controversial. This study was conducted to evaluate the effect of PCs on lipid metabolism. We searched PubMed, Embase, Web of Science, Chinese biomedical literature service system, China National Knowledge Internet, and Wanfang Data with no time restriction until March 18, 2022, using various forms of "proanthocyanidins" and "blood lipid" search terms. Randomized controlled trials investigating the relationship between PCs and lipid metabolism were included. The standard system of Cochrane Collaboration was used to assess the quality of studies. We standardized mean differences (SMDs) with 95% confidence interval (CI) using the random-effects model, Cohen approach. Seventeen studies (17 trials, N = 1138) fulfilled the eligibility criteria. PCs significantly reduced triglyceride, and increased recombinant apolipoprotein A1. Subgroup analysis showed a significant reduction in triglycerides in older adults (≥60 years) and total cholesterol for participants who were not overweight or obese (body mass index <24). An intervention duration of greater than 8 weeks reduced triglyceride and low-density lipoprotein cholesterol levels but increased high-density lipoprotein cholesterol. Different doses of PCs could regulate triglycerides, high-density lipoprotein cholesterol and total cholesterol. PCs have beneficial effects on circulating lipids and may represent a new approach for treating or preventing lipid metabolism disorders. However, more high-quality studies are needed to confirm these results.


Asunto(s)
Proantocianidinas , Triglicéridos , Proantocianidinas/farmacología , Humanos , Triglicéridos/sangre , Lípidos/sangre , Ensayos Clínicos Controlados Aleatorios como Asunto , Metabolismo de los Lípidos/efectos de los fármacos , LDL-Colesterol/sangre , HDL-Colesterol/sangre , Apolipoproteína A-I/sangre , Colesterol/sangre , Antioxidantes/farmacología
2.
Oxid Med Cell Longev ; 2021: 3027954, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745415

RESUMEN

Chronic high-dose alcohol consumption impairs bone remodeling, reduces bone mass, and increases the risk of osteoporosis and bone fracture. However, the mechanisms underlying alcohol-induced osteoporosis are yet to be elucidated. In this study, we showed that excess intake of ethyl alcohol (EtOH) resulted in osteopenia and osteoblast necroptosis in mice that led to necrotic lesions and reduced osteogenic differentiation in bone marrow mesenchymal stem cells (BMMSCs). We found that EtOH treatment led to the activation of the RIPK1/RIPK3/MLKL signaling, resulting in increased osteoblast necroptosis and decreased osteogenic differentiation and bone formation both in vivo and in vitro. We further discovered that excessive EtOH treatment-induced osteoblast necroptosis might partly depend on reactive oxygen species (ROS) generation; concomitantly, ROS contributed to necroptosis of osteoblasts through a positive feedback loop involving RIPK1/RIPK3. In addition, blocking of the RIPK1/RIPK3/MLKL signaling by necrostatin-1 (Nec-1), a key inhibitor of RIPK1 kinase in the necroptosis pathway, or antioxidant N-acetylcysteine (NAC), an inhibitor of ROS, could decrease the activation of osteoblast necroptosis and ameliorate alcohol-induced osteopenia both in vivo and in vitro. Collectively, we demonstrated that chronic high-dose alcohol consumption induced osteopenia via osteoblast necroptosis and revealed that RIPK1 kinase may be a therapeutic target for alcohol-induced osteopenia.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Enfermedades Óseas Metabólicas/patología , Necroptosis , Osteoblastos/patología , Especies Reactivas de Oxígeno/metabolismo , Animales , Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA