Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 129: 155597, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38643713

RESUMEN

BACKGROUND: Sepsis-induced cardiac dysfunction (SICD) is a serious complication of sepsis that is associated with increased mortality. Ferroptosis has been reported in the SICD. TaoHe ChengQi decoction (THCQD), a classical traditional Chinese medicinal formula, has multiple beneficial pharmacological effects. The potential effects of THCQD on the SICD remain unknown. PURPOSE: To investigate the effect of THCQD on SICD and explore whether this effect is related to the regulation of myocardial ferroptosis through nuclear factor erythroid 2-related factor 2 (Nrf2) activation. METHODS: We induced sepsis in a mouse model using cecal ligation and puncture (CLP) and administered THCQD (2 and 4 g/kg) and dexamethasone (40 mg/kg). Mice mortality was recorded and survival curves were plotted. Echocardiography, hematoxylin and eosin staining, and analysis of serum myocardial injury markers and inflammatory factors were used to evaluate cardiac pathology. Myocardial ferroptosis was detected by quantifying specific biomarker content and protein levels. Through HPLC-Q-Exactive-MS analysis, we identified the components of the THCQD. Network pharmacology analysis and Cellular Thermal Shift Assay (CETSA) were utilized to predict the targets of THCQD for treating SICD. We detected the expression of Nrf2 using Western blotting or immunofluorescence. An RSL3-induced ferroptosis model was established using neonatal rat cardiomyocytes (NRCMs) to further explore the pharmacological mechanism of THCQD. In addition to measuring cell viability, we observed changes in NRCM mitochondria using electron microscopy and JC-1 staining. NRF2 inhibitor ML385 and Nrf2 knockout mice were used to validate whether THCQD exerted protective effects against SICD through Nrf2-mediated ferroptosis signaling. RESULTS: THCQD reduced mortality in septic mice, protected against CLP-induced myocardial injury, decreased systemic inflammatory response, and prevented myocardial ferroptosis. Network pharmacology analysis and CETSA experiments predicted that THCQD may protect against SICD by activating the Nrf2 signaling pathway. Western blotting and immunofluorescence showed that THCQD activated Nrf2 in cardiac tissue. THCQDs consistently mitigated RSL3-induced ferroptosis in NRCM, which is related to Nrf2. Furthermore, the pharmacological inhibition of Nrf2 and genetic Nrf2 knockout partially reversed the protective effects of THCQD on SICD and ferroptosis. CONCLUSION: The effect of THCQD on SICD was achieved by activating Nrf2 and its downstream pathways.


Asunto(s)
Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Ferroptosis , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Sepsis , Animales , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Medicamentos Herbarios Chinos/farmacología , Ferroptosis/efectos de los fármacos , Masculino , Ratones , Ratas , Transducción de Señal/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocardio/metabolismo , Cardiopatías/tratamiento farmacológico , Cardiopatías/etiología , Farmacología en Red , Ratas Sprague-Dawley
2.
Phytomedicine ; 121: 155118, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37801895

RESUMEN

BACKGROUND: With an increasing number of myocardial infarction (MI) patients, myocardial fibrosis is becoming a widespread health concern. It's becoming more and more urgent to conduct additional research and investigations into efficient treatments. Ethyl ferulate (EF) is a naturally occurring substance with cardioprotective properties. However, the extent of its impact and the underlying mechanism of its treatment for myocardial fibrosis after MI remain unknown. PURPOSE: The goal of this study was to look into how EF affected the signaling of the TGF-receptor 1 (TGFBR1) in myocardial fibrosis after MI. METHODS: Echocardiography, hematoxylin-eosin (HE) and Masson trichrome staining were employed to assess the impact of EF on heart structure and function in MI-affected mice in vivo. Cell proliferation assay (MTS), 5-Ethynyl-2'-deoxyuridine (EdU), and western blot techniques were employed to examine the influence of EF on native cardiac fibroblast (CFs) proliferation and collagen deposition. Molecular simulation and surface plasmon resonance imaging (SPRi) were utilized to explore TGFBR1 and EF interaction. Cardiac-specific Tgfbr1 knockout mice (Tgfbr1ΔMCK) were utilized to testify to the impact of EF. RESULTS: In vivo experiments revealed that EF alleviated myocardial fibrosis, improved cardiac dysfunction after MI and downregulated the TGFBR1 signaling in a dose-dependent manner. Moreover, in vitro experiments revealed that EF significantly inhibited CFs proliferation, collagen deposition and TGFBR1 signaling followed by TGF-ß1 stimulation. More specifically, molecular simulation, molecular dynamics, and SPRi collectively showed that EF directly targeted TGFBR1. Lastly, knocking down of Tgfbr1 partially reversed the inhibitory activity of EF on myocardial fibrosis in MI mice. CONCLUSION: EF attenuated myocardial fibrosis post-MI by directly suppressing TGFBR1 and its downstream signaling pathway.


Asunto(s)
Infarto del Miocardio , Miocardio , Humanos , Ratones , Animales , Miocardio/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/uso terapéutico , Fibroblastos/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Colágeno/metabolismo , Fibrosis , Factor de Crecimiento Transformador beta1/metabolismo
3.
Phytother Res ; 37(1): 35-49, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36059198

RESUMEN

Myocardial infarction (MI) is the leading cause of death worldwide, and oxidative stress is part of the process that causes MI. Calycosin, a naturally occurring substance with cardioprotective properties, is one of the major active constituents in Radix Astragali. In this study, effect of Calycosin was investigated in vivo and in vitro to determine whether it could alleviate oxidative stress and oxidative stress-induced cardiac apoptosis in neonatal cardiomyocytes (NCMs) via activation of aldehyde dehydrogenase 2 (ALDH2). Calycosin protected against oxidative stress and oxidative stress-induced apoptosis in NCMs. Molecular docking revealed that the ALDH2-Calycosin complex had a binding energy of -9.885 kcal/mol. In addition, molecular docking simulations demonstrated that the ALDH2-Calycosin complex was stable. Using BLI assays, we confirmed that Calycosin could interact with ALDH2 (KD  = 1.9 × 10-4 M). Furthermore, an ALDH2 kinase activity test revealed that Calycosin increased ALDH2 activity, exhibiting an EC50 of 91.79 µM. Pre-incubation with ALDH2 inhibitor (CVT-10216 or disulfiram) reduced the cardio-protective properties Calycosin. In mice with MI, Calycosin therapy substantially reduced myocardial apoptosis, oxidative stress, and activated ALDH2. Collectively, our findings clearly suggest that Calycosin reduces oxidative stress and oxidative stress-induced apoptosis via the regulation of ALDH2 signaling, which supports potential therapeutic use in MI.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Ratones , Animales , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Apoptosis , Aldehído Deshidrogenasa/metabolismo
4.
Zhong Yao Cai ; 31(10): 1526-8, 2008 Oct.
Artículo en Chino | MEDLINE | ID: mdl-19230407

RESUMEN

OBJECTIVE: To observe the influence of Qingxiang San (QS) on substance P (SP), somatostatin (SS) in rats model of spleen and stomach wet heat syndrome. METHODS: 24 rats were divided into 3 groups (each group 8 rats) randomly: the normal control group (NCG), wet heat group (WHG), QS group (QSG). We set up the spleen and stomach wet heat syndrome of rats model by the composite factors such as greasy and sweet food, wet and hot environment, pathogen and so on. Then the contents of SP, SS were detected by radioimmuno assay. RESULTS: The content of SP, SS in WHG were obviously lower than NCG (P<0.01); QSG compared with WHG, the content of SP, SS increased (P<0.01); The content of SP obviously increased when QSG compared with NCG (P<0.01); About the content of SS, there was no significant difference between QSG and NCG (P>0.05), illustrating that QS can increase the content of SP, SS which had decreased. CONCLUSION: QS can regulate the content of SP and SS and increase them which had decreased.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Somatostatina/metabolismo , Enfermedades del Bazo/metabolismo , Gastropatías/metabolismo , Sustancia P/metabolismo , Animales , Modelos Animales de Enfermedad , Combinación de Medicamentos , Femenino , Hormonas Gastrointestinales/metabolismo , Masculino , Plantas Medicinales/química , Antro Pilórico/efectos de los fármacos , Antro Pilórico/metabolismo , Radioinmunoensayo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Enfermedades del Bazo/tratamiento farmacológico , Gastropatías/tratamiento farmacológico , Deficiencia Yin/tratamiento farmacológico , Deficiencia Yin/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA