Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Nanomedicine ; 18: 6869-6882, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026515

RESUMEN

Background: Photothermal therapy (PTT) has gained considerable interest as an emerging modality for cancer treatment in recent years. Radiation therapy (RT) has been widely used in the clinic as a traditional treatment method. However, RT and PTT treatments are limited by side effects and penetration depth, respectively. In addition, hypoxia within the tumor can lead to increased resistance to treatment. Methods: We synthesized multiple sizes of AuPt by modulating the reaction conditions. The smallest size of AuPt was selected and modified with folic acid (FA) for PTT and RT synergy therapy. Various methods including transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FITR) are used to determine the structure and composition of AuPt-FA (AF). In addition, we researched the photothermal properties of AF with IR cameras and infrared lasers. Flow cytometry, colony formation assays, CCK8, and fluorescent staining for probing the treatment effect in vitro. Also, we explored the targeting of AF by TEM and In Vivo Imaging Systems (IVIS). In vivo experiments, we record changes in tumor volume and weight as well as staining of tumor sections (ROS, Ki67, and hematoxylin and eosin). Results: The AuPt with particle size of 16 nm endows it with remarkably high photothermal conversion efficiency (46.84%) and catalase activity compared to other sizes of AuPt (30 nm and 100 nm). AF alleviates hypoxia in the tumor microenvironment, leading to the production of more reactive oxygen species (ROS) during the treatment. In addition, the therapeutic effect was significantly enhanced by combining RT and PTT, with an apoptosis rate of 81.1% in vitro and an in vivo tumor volume reduction rate of 94.0% in vivo. Conclusion: These results demonstrate that AF potentiates the synergistic effect of PTT and RT and has the potential for clinical translation.


Asunto(s)
Nanopartículas Multifuncionales , Nanopartículas , Neoplasias , Humanos , Especies Reactivas de Oxígeno , Fototerapia/métodos , Neoplasias/terapia , Hipoxia , Nanopartículas/química , Línea Celular Tumoral , Microambiente Tumoral
2.
Colloids Surf B Biointerfaces ; 207: 112026, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34384974

RESUMEN

Hypoxia in local tumors leads to the failure or resistance of radiotherapy (RT) and high-dose RT will cause systemic reactions and local radiation damage. As a non-chemotherapeutic intervention, photothermal therapy (PTT) can remove tumor tissues through thermal ablation as well as effectively improve the microenvironment of hypoxic cells. Therefore, the combined use of PTT and RT (thermoradiotherapy) has urgently become an efficient treatment. In this work, by encapsulating prussian blue (PB) nanoparticles in agarose hydrogel, we developed an injectable hybrid light-controlled hydrogel system as a PB reservoir and release controller (PRC) which can realize single injection and multiple treatments in vivo. Under the irradiation of 808 nm near-infrared (NIR) laser, PB nanoparticles convert laser energy into heat energy, causing degradation of agarose hydrogel and the release of PB nanoparticles. Due to the excellent photothermal properties of PB, photothermal treatment in the NIR Biological Windows can greatly enhance the sensitivity of tumor cells to RT. Meanwhile, PB nanoparticles can also be a nanozyme to drive the decomposition of endogenous hydrogen peroxide (H2O2), and then generate oxygen (O2) to improve the tumor hypoxic microenvironment, achieving the further enhancement of the radiation sensitivity. Notably, this study is the first design to utilize hydrogel for thermoradiotherapy. Both in vitro and in vivo experiments, the PRC demonstrated excellent effects of PTT-RT, good stability and biocompatibility, indicating our nanoplatform promote the development of anti-cancer combination thermoradiotherapy with greater clinical significance.


Asunto(s)
Hidrogeles , Nanopartículas , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno , Hipoxia , Oxígeno , Fototerapia , Sefarosa
3.
J Am Chem Soc ; 140(18): 5886-5889, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29489347

RESUMEN

Innovative detection techniques to achieve precise m6A distribution within mammalian transcriptome can advance our understanding of its biological functions. We specifically introduced the atom-specific replacement of oxygen with progressively larger atoms (sulfur and selenium) at 4-position of deoxythymidine triphosphate to weaken its ability to base pair with m6A, while maintaining A-T* base pair virtually the same as the natural one. 4SedTTP turned out to be an outstanding candidate that endowed m6A with a specific signature of RT truncation, thereby making this "RT-silent" modification detectable with the assistance of m6A demethylase FTO through next-generation sequencing. This antibody-independent, 4SedTTP-involved and FTO-assisted strategy is applicable in m6A identification, even for two closely gathered m6A sites, within an unknown region at single-nucleotide resolution.


Asunto(s)
Anticuerpos/química , ADN de Cadena Simple/química , Metiltransferasas/análisis , Selenio/química , Nucleótidos de Timina/química , Anticuerpos/metabolismo , ADN de Cadena Simple/metabolismo , Humanos , Metiltransferasas/metabolismo , Selenio/metabolismo , Nucleótidos de Timina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA