Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bull Environ Contam Toxicol ; 107(4): 585-596, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33779775

RESUMEN

Microplastics are abundant in the environment and have been proven to affect ecosystems and human health. Microorganisms play essential roles in the ecological fate of microplastics pollution, potentially yielding positive and negative effects. This study reviews the research progress of interaction between microplastics and microorganisms based on a bibliometric and visualized analysis. Publication numbers, subjects, countries, institutions, highly cited papers, and keywords were investigated by statistical analysis. VOSviewer software was applied to visualize the co-occurrence and aggregation of national collaboration, subjects, and keywords. Results revealed trends of rapidly increasing publication output that involved multiple disciplines. Contributing countries and their institutions were also identified in this study. Keywords, co-occurrence network visualization, highly cited papers analysis, and knowledge-based mining were all used to give insight into microorganisms or microbiota related to microplastics pollution, and the potential impacts that microplastics biodegradation may cause. In the future, research efforts need to focus on the following areas: microbial degradation processes and mechanisms, assessment of ecological microplastics risks, and potential effects of microplastics bioaccumulation and human exposure. This study provides a holistic view of ongoing microplastics and related microbial research, which may be useful for future microplastics biodegradation studies.


Asunto(s)
Microbiota , Microplásticos , Bibliometría , Biodegradación Ambiental , Humanos , Plásticos
2.
Environ Pollut ; 254(Pt A): 112891, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31408794

RESUMEN

The effluents from nuclear mining processes contain relatively high content of radionuclides (such as uranium), which may seriously threaten the environment and human health. Herein, a novel adsorbent, porous hydroxyapatite, was prepared and proven highly efficient for removal of uranyl ions (U(VI)) given its high U(VI) uptake capacity of 111.4 mg/g, fast adsorption kinetics, and the potential stabilization of adsorbed U(VI). A nearly complete removal of U(VI) was achieved by porous HAP under optimized conditions. Langmuir model could well describe the adsorption equilibrium. The data fit well with pseudo-second-order kinetic model, suggesting that U(VI) adsorption is primarily attributed to chemisorption with porous HAP. Intraparticle diffusion analysis showed that the intraparticle diffusion is the rate-limiting step for U(VI) adsorption by porous HAP. After removal by porous HAP, the adsorbed U(VI) ions were incorporated into tetragonal autunite, which has a low solubility (log Ksp: -48.36). Our findings demonstrate that the porous HAP can effectively remediate uranium contamination and holds great promise for environmental applications.


Asunto(s)
Durapatita/química , Minería , Uranio/química , Contaminantes Radiactivos del Agua/química , Adsorción , Difusión , Iones , Cinética , Porosidad , Uranio/análisis
3.
Environ Pollut ; 249: 144-151, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30884393

RESUMEN

Red mud, which is from the aluminum industry, is a potentially under-utilized resource. Technological processes for using low-cost red mud as an alternative precursor for detoxifying metal pollutants urgently need to be developed. In this study, we systematically investigated the feasibility of using red mud to detoxify metal-containing wastes (e.g., fly ash) via the formation of preferable crystalline phases. To understand the mechanism of metal detoxification by red mud, CuO, NiO, and ZnO were blended with red mud at different weight ratios and the mixtures were then subjected to ceramic-sintering. After sintering, the X-ray diffraction results revealed that all of the metals (i.e., Cu, Ni, and Zn) were able to be crystallographically incorporated into spinel lattices. Sintering the red mud at 1100 °C for 3 h effectively converted the metals into spinels. The mixing weight ratios strongly affected the efficiency of the metal incorporation. The red mud was able to incorporate 15 wt% of metal oxides. The incorporation mechanisms mainly occurred between the metal oxide(s) and hematite. Modified TCLP tests were conducted to further evaluate the metal stabilization performance of the red mud, which demonstrated the leachabilities of ZnO and the sintered red mud + ZnO product. The concentration of leached metal was substantially reduced after the incorporation process, thus demonstrating that red mud can be successfully used to detoxify metals. The results of this study reveal that waste red mud can be feasibly reused as a promising waste-to-resource strategy for stabilizing heavy metal wastes.


Asunto(s)
Óxido de Aluminio/química , Óxido de Magnesio/química , Metales Pesados/química , Contaminantes del Suelo/química , Aluminio/química , Cerámica/química , Ceniza del Carbón , Cobre/química , Contaminantes Ambientales/química , Restauración y Remediación Ambiental/métodos , Compuestos Férricos , Níquel/química , Difracción de Rayos X , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA