Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mater Horiz ; 9(7): 1911-1920, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35532948

RESUMEN

Transparent heaters (THs) are widely used for various applications, such as in smart windows, deicers, defoggers, displays, and thermotherapy pads. The rapid development of flexible electronics has led to a demand for flexible and even stretchable THs. At present, most stretchable THs are designed using a combination of electronically conductive networks and flexible polymer materials. Electronic THs still face common challenges, such as a transparency-conductance trade-off, non-uniform heating, and poor interfacial adhesion. In this work, an ionic TH is reported based on a stretchable and transparent ionogel. Joule heating from an ionic current induced by alternating voltage functions as the heating source. This ionogel-based TH exhibits excellent and steady mechanical, optical, electrical, and thermal properties, simultaneously solving the abovementioned three problems relating to electronic THs. Two simple applications of this ionogel-based TH are demonstrated: deicing and boiling water. This reported ionogel-based TH provides a new material choice and heating principle to compete with conventional electronic TH technology.

2.
J Mater Chem B ; 7(8): 1311-1321, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32255170

RESUMEN

Magnetic-field driven soft materials have found extensive applications in fields such as soft robotics, shape morphing and biomedicine. Compared to magnetoactive elastomers (MAEs), magnetic hydrogels have shown significant advantages for in vivo applications, because of their better biocompatibility, as well as their soft and wet nature. However, the poor mechanical properties and ion sensitivity of conventional magnetic hydrogels will severely limit their applications especially under physiological conditions. Double network hydrogels are tough and stable, but do not respond to environmental stimuli. Here magnetic double network (M-DN) hydrogels have been developed with outstanding mechanical performances and ion-resistant stability. M-DN hydrogels show a high modulus of ∼0.4 MPa and a high toughness of ∼1500 J m-2. The volume, magnetic and mechanical properties of M-DN hydrogels show negligible deterioration in ionic solutions. M-DN hydrogels exhibit magnetic responsiveness and have been used for tissue hyperthermia and drug release by magnetic induction heating. The induction heating behavior of M-DN hydrogels can be tuned to meet the clinical requirements, by changing the magnetic field strength or the composition of magnetic hydrogels. M-DN hydrogels may be inspiring to the development of responsive DN hydrogels and expand their more potential applications in load-bearing biomedical engineering.


Asunto(s)
Liberación de Fármacos/fisiología , Hidrogeles/metabolismo , Hipertermia Inducida/métodos , Fenómenos Magnéticos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA