Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Pharmacol ; 202: 115137, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35700758

RESUMEN

ß2-microglobulin (B2M) has been established to impair cognitive function. However, no treatment is currently available for B2M-induced cognitive dysfunction. Itaconate is a tricarboxylic acid (TCA) cycle intermediate that exerts neuroprotective effects in several neurological diseases. The amino-ß-carboxymuconate-semialdehyde-decarboxylase (ACMSD)/picolinic acid (PIC) pathway is a crucial neuroprotective branch in the kynurenine pathway (KP). The present study sought to investigate whether Itaconate attenuates B2M-induced cognitive impairment and examine the mediatory role of the hippocampal ACMSD/PIC pathway. We demonstrated that 4-Octyl Itaconate (OI, an itaconate derivative) significantly alleviated B2M-induced cognitive dysfunction and hippocampal neurogenesis impairment. OI treatment also increased the expression of ACMSD, elevated the concentration of PIC, and decreased the level of 3-HAA in the hippocampus of B2M-exposed rats. Furthermore, inhibition of ACMSD by TES-991 significantly abolished the protections of Itaconate against B2M-induced cognitive impairment and neurogenesis deficits. Exogenous PIC supplementation in hippocampus also improved cognitive performance and hippocampal neurogenesis in B2M-exposed rats. These findings demonstrated that Itaconate alleviates B2M-induced cognitive impairment by upregulation of the hippocampal ACMSD/PIC pathway. This is the first study to document Itaconate as a promising therapeutic agent to ameliorate cognitive impairment. Moreover, the mechanistic insights into the ACMSD/PIC pathway improve our understanding of it as a potential therapeutic target for neurological diseases beyond B2M-associated neurocognitive disorders.


Asunto(s)
Carboxiliasas , Disfunción Cognitiva , Aminoácidos , Animales , Carboxiliasas/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Hipocampo/metabolismo , Ácidos Picolínicos , Ratas , Succinatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA