Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 281: 114553, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34428524

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Actinidia chinensis Planch. (ACP) is a common traditional Chinese medicine, which is mostly used for cancer treatment clinically. Liver cancer is a refractory tumor with a high incidence. Although ACP has been reported in the treatment of liver cancer, its possible mechanism of action is little known. AIM OF STUDY: The aim of this paper was to investigate the active components of ACP in the treatment of liver cancer and the related mechanisms by a network pharmacology approach. METHODS: The active components of ACP and the corresponding targets were obtained from multiple databases. Cytoscape software and STRING database were used to build the "herb-component-target (H-C-T)" network and protein-protein interactions (PPI) network. The key components and targets were further predicted by the Cytohubba plug-in in Cytoscape. Then, experiments were carried out on HepG2 cell line and Huh7 cell line to verify the effects and related mechanisms of the key compounds in ACP. RESULTS: 28 active components in ACP and 1299 related targets were screened out according to two indicators, oral bioavailability (OB) and drug-likeness (DL). The key compounds predicted include rutinum, astragalin, and L-epicatechin, and the main signaling pathways focus on apoptosis. Astragalin, a key compound in ACP, could inhibit the expression of Bcl-2, up-regulate the expression of Bax, cleaved caspase 3, cleaved caspase 8, and cleaved caspase 9, and regulate the apoptosis signaling pathway to inhibit the proliferation of liver cancer cells to play a therapeutic role in anti-liver cancer. CONCLUSIONS: These results suggest that ACP can alleviate the progression of liver cancer through the mechanisms predicted by network pharmacology, and provide a basis for the further understanding of the application of ACP in anti-cancer.


Asunto(s)
Actinidia/química , Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Fitoterapia , Extractos Vegetales
2.
Int J Biol Sci ; 17(4): 942-956, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867820

RESUMEN

Colorectal cancer (CRC) is one of the most deadly malignant tumors, which seriously threatens human health. Ferroptosis, a new type of iron-dependent cell regulatory necrosis. Inducing ferroptosis of tumor cells is regarded as a potential treatment strategy. However, the prognostic value of ferroptosis-related genes in CRC remains to be further elucidated. Gallic acid, widely used in the chemical, pharmaceutical, and food fields, is a dietary supplement with potential prescription significance. In this study, the mRNA expression profiles and corresponding clinical data of CRC patients were downloaded from public databases. Gene Expression Profiling Interactive Analysis (GEPIA) was used to evaluate the expression levels of ferroptosis-related genes. In addition, bioinformatics analysis showed the prognostic value of ferroptosis-related genes in CRC. Molecular docking predicts the binding status of gallic acid and ferroptosis-related genes. The experiment confirmed the correctness of the predicted results. Our results show that in the TCGA cohort, 30 ferroptosis-related genes are differentially expressed between CRC and adjacent normal tissues. Among them, eight differentially expressed genes are related to overall survival. Gallic acid can bind to ferroptosis-related targets and regulate the expression of corresponding proteins, and ferroptosis inhibitors reversed the experimental results. In summary, eight new ferroptosis-related genes can be used to predict the prognosis of CRC. Gallic acid can improve CRC by regulating ferroptosis.


Asunto(s)
Colitis Ulcerosa/tratamiento farmacológico , Neoplasias Colorrectales/genética , Ferroptosis/efectos de los fármacos , Ácido Gálico/uso terapéutico , Animales , Estudios de Casos y Controles , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/prevención & control , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Ferroptosis/genética , Ácido Gálico/farmacología , Perfilación de la Expresión Génica , Células HCT116 , Humanos , Simulación del Acoplamiento Molecular , Mapas de Interacción de Proteínas , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA