Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Death Dis ; 5: e1356, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25077542

RESUMEN

Sinomenine, the main alkaloid extracted from the medicinal plant Sinomenium acutum, is known for its anti-inflammatory effects. Recent studies have suggested its anti-cancer effect in synovial sarcoma, lung cancer and hepatic cancer. However, the underlying molecular mechanism for its anti-cancer effect still remains unclear. This study investigated the anti-tumor activity of sinomenine hydrochloride (SH), a hydrochloride form of sinomenine, in human breast cancer cells in vitro and in vivo. We found that SH potently inhibited cell viability of a broad panel of breast cancer cell lines. Two representative breast cancer cell lines, namely ER(-)/PR(-) MDA-MB-231 and ER(+)/PR(+) MCF-7, were used for further investigation. The results showed that SH induced G1/S cell cycle arrest, caused apoptosis and induced ATM/Chk2- and ATR/Chk1-mediated DNA-damage response in MDA-MB-231 and MCF-7. The anti-cancer effect of SH was regulated by increased expression levels of p-ERK, p-JNK and p-38 MAPK. Further studies showed that SH resulted in an increase in reactive oxygen species (ROS) and inhibition of ROS by N-acetyl-L-cysteine (NAC) almost blocked SH-induced DNA damage but only mitigated SH-induced MAPK expression changes, suggesting that both ROS-dependent and -independent pathways were involved in MAPK-mediated SH-induced breast cancer cell death. The in vivo study demonstrated that SH effectively inhibited tumor growth without showing significant toxicity. In conclusion, SH induced breast cancer cell death through ROS-dependent and -independent pathways with an upregulation of MAPKs, indicating that SH may be a potential anti-tumor drug for breast cancer treatment.


Asunto(s)
Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Morfinanos/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Femenino , Humanos , Ratones Endogámicos BALB C
2.
J Cell Sci ; 92 ( Pt 4): 569-74, 1989 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-2689460

RESUMEN

A myosin heavy chain polypeptide has been identified and localized in Nicotiana pollen tubes using monoclonal anti-myosin antibodies. The epitopes of these antibodies were found to reside on the myosin heavy chain head and rod portion and were, therefore, designated anti-S-1 (myosin S-1) and anti-LMM (light meromyosin). On Western blots of the total soluble pollen tube proteins, both anti-S-1 and anti-LMM label a polypeptide of approximately 175,000 Mr. Immunofluorescence microscopy shows that both antibodies yield numerous fluorescent spots throughout the whole length of the tube, often with an enrichment in the tube tip. These fluorescent spots are thought to represent vesicles and/or organelles in the pollen tubes. In addition to this common pattern, anti-S-1 stains both the generative cell and the vegetative nuclear envelope. The different staining patterns of the nucleus between anti-S-1 and anti-LMM may be caused by some organization and/or anchorage state of the myosin molecules on the nuclear surface that differs from those on the vesicles and/or organelles.


Asunto(s)
Miosinas/análisis , Nicotiana/análisis , Plantas Tóxicas , Anticuerpos Monoclonales , Western Blotting , Núcleo Celular/análisis , Citoplasma/análisis , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Miosinas/inmunología , Polen , Nicotiana/ultraestructura
3.
Cell Motil Cytoskeleton ; 12(4): 216-24, 1989.
Artículo en Inglés | MEDLINE | ID: mdl-2655936

RESUMEN

A comparison of actin localization in pollen tubes of Nicotiana has been made using a monoclonal actin antibody and rhodamine-phalloidin (RP). The monoclonal antiactin, based on Western blotting of pollen tube extract, labels a polypeptide at 45 kD that comigrates with muscle actin. A 51-kD unknown protein and three bands less than 45 kD, presumed to be proteolytic fragments of actin, are also observed. Structural observations using this antibody reveal a network of axially oriented strands of microfilaments (MFs). The MFs are distributed throughout the length of the pollen tube except at the very tip, where diffuse staining is usually observed. A similar pattern of MFs is evident after RP staining. When pollen tubes are treated with cytochalasins (CB or CD) cytoplasmic streaming is inhibited, as is tube elongation. Microscopic analysis reveals that the microfilament (MF) pattern is markedly altered; however, the antibody and RP produce different staining patterns. The antibody reveals many MF strands that distribute throughout the tube length and extend into the very tip. In contrast, RP shows mostly a diffuse staining pattern with only a few short clumps of filamentous material. Immunogold labelling of sections of pollen tubes prepared by rapid-freeze fixation and freeze substitution reveals that actin MF bundles are indeed present after cytochalasin treatment. Our results thus question reports in the literature, based on phalloidin staining, asserting that cytochalasin fragments or destroys actin MFs.


Asunto(s)
Actinas/análisis , Anticuerpos Monoclonales , Oligopéptidos , Faloidina , Polen/ultraestructura , Citocalasinas/farmacología , Técnica del Anticuerpo Fluorescente , Immunoblotting , Microscopía Electrónica , Microscopía Fluorescente , Plantas Tóxicas , Polen/análisis , Nicotiana/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA