Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioact Mater ; 18: 228-241, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35387171

RESUMEN

Insufficient osseointegration and biofilm-associated bacterial infection are important challenges for clinical application of titanium (Ti)-based implants. Here, we constructed mesoporous polydopamine (MPDA) nanoparticles (NPs) loaded with luteolin (LUT, a quorum sensing inhibitor), which were further coated with the shell of calcium phosphate (CaP) to construct MPDA-LUT@CaP nanosystem. Then, MPDA-LUT@CaP NPs were immobilized on the surface of Ti implants. Under acidic environment of bacterial biofilm-infection, the CaP shell of MPDA-LUT@CaP NPs was rapidly degraded and released LUT, Ca2+ and PO4 3- from the surface of Ti implant. LUT could effectively inhibit and disperse biofilm. Furthermore, under near-infrared irradiation (NIR), the thermotherapy induced by the photothermal conversion effect of MPDA destroyed the integrity of the bacterial membrane, and synergistically led to protein leakage and a decrease in ATP levels. Combined with photothermal therapy (PTT) and quorum-sensing-inhibition strategy, the surface-functionalized Ti substrate had an antibacterial rate of over 95.59% against Staphylococcus aureus and the elimination rate of the formed biofilm was as high as 90.3%, so as to achieve low temperature and efficient treatment of bacterial biofilm infection. More importantly, the modified Ti implant accelerated the growth of cell and the healing process of bone tissue due to the released Ca2+ and PO4 3-. In summary, this work combined PTT with quorum-sensing-inhibition strategy provides a new idea for surface functionalization of implant for achieving effective antibacterial and osseointegration capabilities.

2.
ACS Nano ; 14(3): 3546-3562, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32069025

RESUMEN

Photothermal treatment (PTT) involving a combination of therapeutic modalities recently emerged as an efficient alternative for combating biofilm. However, PTT-related local high temperature may destroy the surrounding healthy tissues. Herein, we present an all-in-one phototherapeutic nanoplatform consisting of l-arginine (l-Arg), indocyanine green (ICG), and mesoporous polydopamine (MPDA), namely, AI-MPDA, to eliminate the already-formed biofilm. The fabrication process included surface modification of MPDA with l-Arg and further adsorption of ICG via π-π stacking. Under near-infrared (NIR) exposure, AI-MPDA not only generated heat but also produced reactive oxygen species, causing a cascade catalysis of l-Arg to release nitric oxide (NO). Under NIR irradiation, biofilm elimination was attributed to the NO-enhanced photodynamic therapy and low-temperature PTT (≤45 °C). Notably, the NIR-triggered all-in-one strategy resulted in severe destruction of bacterial membranes. The phototherapeutic AI-MPDA also displayed good cytocompatibility. NIR-irradiated AI-MPDA nanoparticles not only prevented bacterial colonization but also realized a rapid recovery of infected wounds. More importantly, the all-in-one phototherapeutic platform displayed effective biofilm elimination with an efficiency of around 100% in a abscess formation model. Overall, this low-temperature phototherapeutic platform provides a reliable tool for combating already-formed biofilms in clinical applications.


Asunto(s)
Antibacterianos/farmacología , Arginina/farmacología , Verde de Indocianina/farmacología , Indoles/farmacología , Óxido Nítrico/farmacología , Polímeros/farmacología , Temperatura , Adsorción , Antibacterianos/química , Arginina/química , Biopelículas/efectos de los fármacos , Verde de Indocianina/química , Indoles/química , Rayos Infrarrojos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Estructura Molecular , Nanopartículas/química , Óxido Nítrico/química , Tamaño de la Partícula , Terapia Fototérmica , Polímeros/química , Porosidad , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie
3.
Biomater Sci ; 8(7): 1840-1854, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-31967110

RESUMEN

Biomaterial-associated bacterial infection is one of the major causes of implant failure. The treatment of such an implant infection typically requires the elimination of bacteria and acceleration of tissue regeneration around implants simultaneously. To address this issue, an ideal implanted material should have the dual functions of bacterial infection therapy and tissue regeneration at the same time. Herein, an enzyme-responsive nanoplatform was fabricated in order to treat implant-associated bacterial infection and accelerate tissue regeneration in vivo. Firstly, Ag nanoparticles were pre-encapsulated in mesoporous silica nanoparticles (MSNs) by a one-pot method. Then, poly-l-glutamic acid (PG) and polyallylamine hydrochloride (PAH) were assembled by the layer-by-layer (LBL) assembly technique on MSN-Ag to form LBL@MSN-Ag nanoparticles. Furthermore, the LBL@MSN-Ag nanoparticles were deposited on the surface of polydopamine-modified Ti substrates. PG is a homogeneous polyamide composed of an amide linkage, which can be degraded by glutamyl endonuclease secreted by Staphylococcus aureus. Inductively coupled plasma spectroscopy (ICP) results proved that the LBL@MSN-Ag particles show a significant enzyme responsive release of Ag ions. Furthermore, results of antibacterial experiments in vitro showed that the Ti substrates modified with an LBL@MSN-Ag nanocoating presented an excellent antibacterial effect. As for an animal experiment in vivo, in a bacterium infected femur-defect rat model, the modified Ti implants effectively treated bacterial infection. More importantly, the results of micro-CT, haematoxylin-eosin staining and Masson's trichrome staining demonstrated that the modified Ti implants significantly promoted the formation of new bone tissue after implantation for 4 weeks. The present system paves the way for developing the next generation of implants with the functions of treating bacterial infection and promoting tissue regeneration.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Osteomielitis/microbiología , Poliaminas/administración & dosificación , Ácido Poliglutámico/administración & dosificación , Prótesis e Implantes/microbiología , Plata/química , Infecciones Estafilocócicas/tratamiento farmacológico , Animales , Antibacterianos/química , Materiales Biocompatibles Revestidos/química , Modelos Animales de Enfermedad , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Osteomielitis/tratamiento farmacológico , Poliaminas/química , Poliaminas/farmacología , Ácido Poliglutámico/química , Ácido Poliglutámico/farmacología , Ratas , Dióxido de Silicio/química , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie , Titanio/química , Resultado del Tratamiento
4.
Biomaterials ; 223: 119479, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31520885

RESUMEN

Biofilm formation is a main challenge in treatment of bone-implant-associated infections, resulting in tolerance to immune system and antibiotics. However, smart non-surgical or non-invasive treatment methods of combating established biofilm on an implant have been less reported. Herein, a therapeutic system consisting of mesoporous polydopamine nanoparticles (MPDA) to combat biofilm is reported for the first time. We develop a synergistic photothermal/photodynamic therapy (PTT/PDT) strategy aiming for biofilms eradication on titanium (Ti) implant, which is integrated with MPDA loading with photosensitizer Indocyanine Green (ICG) by π-π stacking. Specifically, MPDA is functionalized with RGD peptide to endow the modified Ti sample (Ti-M/I/RGD) with good cytocompatibility. More importantly, Ti-M/I/RGD implant remarkably kills Staphylococcus aureus (S. aureus) biofilm with an efficiency of 95.4% in vivo upon near infrared (NIR). After biofilm eradication, implant still displays great performance regarding osteogenesis and osseointegration. Overall, this study provides a PTT/PDT strtategy for the development of antibacterial Ti implants for potential orthpediac application.


Asunto(s)
Biopelículas , Fotoquimioterapia/métodos , Fototerapia/métodos , Titanio/química , Fosfatasa Alcalina/metabolismo , Animales , Antibacterianos/farmacología , Materiales Biocompatibles , Sustitutos de Huesos , Diferenciación Celular , Compuestos de Diazonio/química , Verde de Indocianina/farmacología , Indoles , Luz , Masculino , Nanopartículas del Metal/química , Ortopedia , Oseointegración , Osteogénesis , Fármacos Fotosensibilizantes/farmacología , Polímeros , Diseño de Prótesis , Piridinas/química , Ratas , Ratas Sprague-Dawley , Espectroscopía Infrarroja Corta , Staphylococcus aureus/metabolismo
5.
Biomaterials ; 217: 119290, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31252244

RESUMEN

To inhibit bacterial infection in situ and improve osseointegration are essentially important for long-term survival of an orthopedic implant, in particular for infection-associating revision surgery. Herein, we fabricate a functional molybdenum disulfide (MoS2)/polydopamine (PDA)-arginine-glycine-aspartic acid (RGD) coating on titanium (Ti) implant to address above concerns simultaneously. The coating not only improved the osteogenesis of mesenchymal stem cells (MSCs), but also endowed Ti substrates with effective antibacterial ability when exposing to near-infrared (NIR) irradiation. It accelerated glutathione (GSH) oxidation via photothermal energy and induced intrinsic ROS-independent oxidative stress damage deriving from MoS2 nanosheets. The results displayed that RGD-decorated MoS2 nanosheets significantly increased the cellular osteogenic behaviors of MSCs via up-regulating osteogenesis-related genes (ALP, Runx2, Col I and OCN) in vitro. Moreover, the functionalized Ti substrates demonstrated great antibacterial efficiency of over 92.6% inhibition for S. aureus and E. coli under NIR-irradiation. Hyperthermia induced by photothermal effect accelerated the GSH consumption and ROS-independent oxidative stress destroyed the integrity of bacteria membranes, which synergistically led to protein leakage and ATP decrease. Furthermore, co-culture experiment showed that S. aureus contamination was efficiently cleaned from MoS2/PDA-RGD surface after NIR photothermal treatment, while MSCs adhered and proliferated on the MoS2/PDA-RGD surface. In an S. aureus infection model in vivo, MoS2/PDA-RGD modified Ti rods killed bacteria with an efficiency of 94.6% under NIR irradiation, without causing damage to normal tissue. More importantly, the MoS2/PDA-RGD modified Ti implants accelerated new bone formation in comparison with TNT implants in vivo.


Asunto(s)
Antibacterianos/farmacología , Materiales Biocompatibles Revestidos/farmacología , Disulfuros/farmacología , Rayos Infrarrojos , Molibdeno/farmacología , Estrés Oxidativo , Prótesis e Implantes , Especies Reactivas de Oxígeno/metabolismo , Titanio/farmacología , Animales , Muerte Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Hipertermia Inducida , Indoles/farmacología , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Oligopéptidos/farmacología , Osteogénesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Fototerapia , Polímeros/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Conejos , Ratas Sprague-Dawley , Staphylococcus aureus/efectos de los fármacos , Microtomografía por Rayos X
6.
J Mater Chem B ; 7(15): 2534-2548, 2019 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32255130

RESUMEN

Bacterial infections at wound tissue sites usually delay the wound healing process and even result in severe life-threatening complications. Therefore, it is imperative to develop an efficient strategy to simultaneously enhance the antibacterial abilities and improve the wound healing process. Here, we report a composite hydrogel composed of methacrylate-modified gelatin (Gel-MA) and N,N-bis(acryloyl)cystamine (BACA)-chelated Cu nanoparticles (Cu NPs) via radical polymerization with a photoinitiator. The Cu NPs could effectively convert NIR laser irradiation (808 nm) energy into localized heat due to the localized surface plasmon resonance (LSPR) effect for effecting photothermal therapy. In vitro antimicrobial experiments revealed that the hybrid hydrogel exhibited predominant antibacterial efficacy against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, while Cu-NP-embedded hydrogel + laser group exhibited superior antibacterial capacity. The excellent antibacterial properties can be attributed to the synergistic effect of photothermal performance and rapid release of copper ions (Cu2+) because of the laser irradiation of Cu NPs. Moreover, the released Cu2+ could stimulate NIH-3T3 fibroblast proliferation without any inflammatory responses. Moreover, chronic wound healing process of S. aureus-infected model was significantly accelerated with prominent antibacterial ability, reduced inflammatory response, and promoted angiogenesis ability in vivo. In summary, Cu-NP-embedded hydrogels are a promising candidate for skin tissue regeneration and potentially valuable for clinical applications.


Asunto(s)
Cobre/química , Hidrogeles/química , Hidrogeles/farmacología , Nanopartículas del Metal/química , Fototerapia/métodos , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Hidrogeles/uso terapéutico , Peroxidación de Lípido/efectos de los fármacos , Ratones , Células 3T3 NIH , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA