Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 351: 141174, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218242

RESUMEN

Sodium persulphate (PS) is a highly effective oxidising agent widely used in groundwater remediation and wastewater treatment. Although numerous studies have examined the impact of PS with respect to the removal efficiency of organic pollutants, the residual effects of PS exposure on the biogeochemical parameters and microbial ecosystems of contaminated aquifers are not well understood. This study investigates the effects of exposure to different concentrations of PS on the biogeochemical parameters of petroleum-contaminated aquifers using microcosm batch experiments. The results demonstrate that PS exposure increases the oxidation-reduction potential (ORP) and electrical conductivity (EC), while decreasing total organic carbon (TOC), dehydrogenase (DE), and polyphenol oxidase (PO) in the aquifer. Three-dimensional excitation-emission matrix (3D-EEM) analysis indicates PS is effective at reducing fulvic acid-like and humic acid-like substances and promoting microbial metabolic activity. In addition, PS exposure reduces the abundance of bacterial community species and the diversity index of evolutionary distance, with a more pronounced effect at high PS concentrations (31.25 mmol/L). Long-term (90 d) PS exposure results in an increase in the abundance of microorganisms with environmental resistance, organic matter degradation, and the ability to promote functional genes related to biological processes such as basal metabolism, transmission of genetic information, and cell motility of microorganisms. Structural equation modeling (SEM) further confirms that ORP and TOC are important drivers of change in the abundance of dominant phyla and functional genes. These results suggest exposure to different concentrations of PS has both direct and indirect effects on the dominant phyla and functional genes by influencing the geochemical parameters and enzymatic activity of the aquifer. This study provides a valuable reference for the application of PS in ecological engineering.


Asunto(s)
Agua Subterránea , Microbiota , Petróleo , Compuestos de Sodio , Sulfatos , Petróleo/toxicidad , Petróleo/metabolismo , Bacterias/genética , Bacterias/metabolismo , Agua Subterránea/química
2.
Sci Total Environ ; 776: 145858, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33640551

RESUMEN

In this study, we proposed a novel IFAS-MBR with low aeration for the treatment of real municipal wastewater. With biocarriers packed in the anoxic tank, the pilot-scale IFAS-MBR operated with average dissolved oxygen concentrations of 0.56 mg/L in the oxic tank. Over 110 days of operation, highly efficient nutrient removal was achieved with the total nitrogen (TN) and phosphorus (TP) removal efficiencies of 78.1 ± 7.2% and 93.7 ± 5.8%, respectively. The average effluent concentrations of TN and TP reached 5.4 and 0.26 mg/L, respectively. Meanwhile, the removal efficiency of COD reached 95.3 ± 1.3% in the system, and the concentrations of COD decreased from 31.9 ± 3.7 (sludge supernatant) to 12.7 ± 1.6 mg/L (permeate) after membrane filtration. Microbial community analysis showed that Nitrosomonas (0.32%) and Nitrospira (1.85%) in activated sludge were the main drivers of the nitrification process, while various denitrifying bacteria in activated sludge and biofilms were responsible for nitrate reduction in the anoxic tank. Candidatus Accumulibacter (0.34%) and Dechloromonas (1.31%) primarily contributed to denitrifying phosphorus uptake in the anoxic tank. Furthermore, these organisms (i.e., core functional microbiota) exhibited stable levels over the entire operation. The highly enriched hydrolytic fermentation bacteria drove community succession, and the remarkable functional robustness of microbial communities in activated sludge and biofilms favored nutrient removal. Overall, the novel IFAS-MBR system provides an energy-efficient MBR alternative owing to its highly efficient performance and low operating costs enabled by low aeration rates and the absence of an external carbon source.


Asunto(s)
Microbiota , Aguas Residuales , Reactores Biológicos , Nitrógeno , Nutrientes , Fósforo , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA