Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 118: 154950, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37441987

RESUMEN

BACKGROUND: Sustained liver fibrosis may lead to cirrhosis. Activated hepatic stellate cells (HSCs) are crucial for liver fibrosis development. Ferroptosis, a newly iron-dependent regulated cell death, has been demonstrated to be involved in HSC inactivation. PURPOSE: Ginsenoside Rh2 (GRh2), a natural bioactive product derived from ginseng, has been shown to promote HSC inactivation. However, the effect of GRh2 on HSC ferroptosis remains unclear. METHODS: We explored the effects of GRh2 on liver fibrosis in vivo and in vitro. RNA-sequence analysis was performed in HSCs after GRh2 treatment. The crosstalk between ferroptotic HSCs and macrophages was also explored. RESULTS: GRh2 alleviated liver fibrosis in vivo. In vitro, GRh2 reduced HSC proliferation and activation via ferroptosis, with increased intracellular iron, reactive oxygen species, malondialdehyde and glutathione depletion. The expression of SLC7A11, a negative regulator of ferroptosis, was obviously reduced by GRh2. Interestingly, interferon regulatory factor 1 (IRF1), a transcription factor, was predicted to bind the promoter region of SCL7A11. The interaction between IRF1 and SCL7A11 was further confirmed by the results of chromatin immunoprecipitation and luciferase reporter assays. Furthermore, loss of IRF1 led to an increase in SCL7A11, which contributed to the suppression of HSC ferroptosis and the enhancement of HSC activation in GRh2-treated HSCs. Further studies revealed that GRh2-induced HSC ferroptosis contributed to the inhibition of macrophage recruitment via regulation of inflammation-related genes. Moreover, GRh2 caused a reduction in liver inflammation in vivo. CONCLUSION: Collectively, GRh2 up-regulates IRF1 expression, resulting in the suppression of SLC7A11, which contributes to HSC ferroptosis and inactivation. GRh2 ameliorates liver fibrosis through enhancing HSC ferroptosis and inhibiting liver inflammation. GRh2 may be a promising drug for treating liver fibrosis.


Asunto(s)
Ferroptosis , Células Estrelladas Hepáticas , Humanos , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/farmacología , Cirrosis Hepática/metabolismo , Fibrosis , Hierro/metabolismo , Inflamación/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA