Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Adv Healthc Mater ; 12(9): e2202946, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36495088

RESUMEN

Photoacoustic imaging (PAI) has tremendous potential for improving ovarian cancer detection. However, the lack of effective exogenous contrast agents that can improve PAI diagnosis accuracy significantly limits this application. This study presents a novel contrast nanoagent with a specific spectral signature that can be easily distinguished from endogenous chromophores in cancer tissue, allowing for high-contrast tumor visualization. Constructed as a 40 nm biocompatible polymeric nanoparticle loaded with two naphthalocyanine dyes, this agent is capable of efficient ovarian tumor accumulation after intravenous injection. The developed nanoagent displays a spectral signature with two well-separated photoacoustic peaks of comparable PA intensities in the near-infrared (NIR) region at 770 and 860 nm, which remain unaffected in cancer tissue following systemic delivery. In vivo experiments in mice with subcutaneous and intraperitoneal ovarian cancer xenografts validate that this specific spectral signature allows for accurate spectral unmixing of the nanoagent signal from endogenous contrast in cancer tissue, allowing for sensitive noninvasive cancer diagnosis. In addition, this nanoagent can selectively eradicate ovarian cancer tissue with a single dose of photothermal therapy by elevating the intratumoral temperature to ≈49 °C upon exposure to NIR light within the 700-900 nm range.


Asunto(s)
Nanopartículas , Neoplasias Ováricas , Técnicas Fotoacústicas , Humanos , Femenino , Animales , Ratones , Neoplasias Ováricas/diagnóstico por imagen , Fototerapia/métodos , Nanopartículas/uso terapéutico , Polímeros , Diagnóstico por Imagen , Técnicas Fotoacústicas/métodos
2.
Small ; 19(2): e2202343, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36394151

RESUMEN

Ectopic pregnancy (EP) is the leading cause of maternity-related death in the first trimester of pregnancy. Approximately 98% of ectopic implantations occur in the fallopian tube, and expedient management is crucial for preventing hemorrhage and maternal death in the event of tubal rupture. Current ultrasound strategies misdiagnose EP in up to 40% of cases, and the failure rate of methotrexate treatment for confirmed EP exceeds 10%. Here the first theranostic strategy for potential management of EP is reported using a near-infrared naphthalocyanine dye encapsulated within polymeric nanoparticles. These nanoparticles preferentially accumulate in the developing murine placenta within 24 h following systemic administration, and enable visualization of implantation sites at various gestational stages via fluorescence and photoacoustic imaging. These nanoparticles do not traverse the placental barrier to the fetus or impact fetal development. However, excitation of nanoparticles localized in specific placentas with focused NIR light generates heat (>43 °C) sufficient for disruption of placental function, resulting in the demise of targeted fetuses with no effect on adjacent fetuses. This novel approach would enable diagnostic confirmation of EP when current imaging strategies are unsuccessful, and elimination of EP could subsequently be achieved using the same nano-agent to generate localized hyperthermia resulting in targeted placental impairment.


Asunto(s)
Hipertermia Inducida , Embarazo Ectópico , Embarazo , Femenino , Humanos , Animales , Ratones , Placenta/diagnóstico por imagen , Embarazo Ectópico/terapia , Trompas Uterinas/diagnóstico por imagen , Ultrasonografía
3.
Small Methods ; 6(12): e2200916, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36319445

RESUMEN

Due to the limited heating efficiency of available magnetic nanoparticles, it is difficult to achieve therapeutic temperatures above 44 °C in relatively inaccessible tumors during magnetic hyperthermia following systemic administration of nanoparticles at clinical dosage (≤10 mg kg-1 ). To address this, a method for the preparation of magnetic nanoparticles with ultrahigh heating capacity in the presence of an alternating magnetic field (AMF) is presented. The low nitrogen flow rate of 10 mL min-1 during the thermal decomposition reaction results in cobalt-doped nanoparticles with a magnetite (Fe3 O4 ) core and a maghemite (γ-Fe2 O3 ) shell that exhibit the highest intrinsic loss power reported to date of 47.5 nH m2 kg-1 . The heating efficiency of these nanoparticles correlates positively with increasing shell thickness, which can be controlled by the flow rate of nitrogen. Intravenous injection of nanoparticles at a low dose of 4 mg kg-1 elevates intratumoral temperatures to 50 °C in mice-bearing subcutaneous and metastatic cancer grafts during exposure to AMF. This approach can also be applied to the synthesis of other metal-doped nanoparticles with core-shell structures. Consequently, this method can potentially be used for the development of novel nanoparticles with high heating performance, further advancing systemic magnetic hyperthermia for cancer treatment.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Neoplasias , Ratones , Animales , Nanopartículas de Magnetita/uso terapéutico , Hipertermia Inducida/métodos , Calefacción , Campos Magnéticos , Hipertermia , Neoplasias/terapia , Nitrógeno
4.
Small ; 18(24): e2107808, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35434932

RESUMEN

Endometriosis is a devastating disease in which endometrial-like tissue forms lesions outside the uterus. It causes infertility and severe pelvic pain in ≈176 million women worldwide, and there is currently no cure for this disease. Magnetic hyperthermia could potentially eliminate widespread endometriotic lesions but has not previously been considered for treatment because conventional magnetic nanoparticles have relatively low heating efficiency and can only provide ablation temperatures (>46 °C) following direct intralesional injection. This study is the first to describe nanoparticles that enable systemically delivered magnetic hyperthermia for endometriosis treatment. When subjected to an alternating magnetic field (AMF), these hexagonal iron-oxide nanoparticles exhibit extraordinary heating efficiency that is 6.4× greater than their spherical counterparts. Modifying nanoparticles with a peptide targeted to vascular endothelial growth factor receptor 2 (VEGFR-2) enhances their endometriosis specificity. Studies in mice bearing transplants of macaque endometriotic tissue reveal that, following intravenous injection at a low dose (3 mg per kg), these nanoparticles efficiently accumulate in endometriotic lesions, selectively elevate intralesional temperature above 50 °C upon exposure to external AMF, and completely eradicate them with a single treatment. These nanoparticles also demonstrate promising potential as magnetic resonance imaging (MRI) contrast agents for precise detection of endometriotic tissue before AMF application.


Asunto(s)
Endometriosis , Hipertermia Inducida , Nanopartículas de Magnetita , Nanopartículas , Animales , Medios de Contraste , Endometriosis/terapia , Femenino , Calefacción , Humanos , Hipertermia Inducida/métodos , Campos Magnéticos , Ratones , Factor A de Crecimiento Endotelial Vascular
5.
Small ; 16(18): e1906936, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32250034

RESUMEN

Endometriosis is a painful disorder where endometrium-like tissue forms lesions outside of the uterine cavity. Intraoperative identification and removal of these lesions are difficult. This study presents a nanoplatform that concurrently delineates and ablates endometriosis tissues using real-time near-infrared (NIR) fluorescence and photothermal therapy (PTT). The nanoplatform consists of a dye, silicon naphthalocyanine (SiNc), capable of both NIR fluorescence imaging and PTT, and a polymeric nanoparticle as a SiNc carrier to endometriosis tissue following systemic administration. To achieve high contrast during fluorescence imaging of endometriotic lesions, nanoparticles are constructed to be non-fluorescent prior to internalization by endometriosis cells. In vitro studies confirm that these nanoparticles activate the fluorescence signal following internalization in macaque endometrial stromal cells and ablate them by increasing cellular temperature to 53 ° C upon interaction with NIR light. To demonstrate in vivo efficiency of the nanoparticles, biopsies of endometrium and endometriosis from rhesus macaques are transplanted into immunodeficient mice. Imaging with the intraoperative Fluobeam 800 system reveals that 24 h following intravenous injection, nanoparticles efficiently accumulate in, and demarcate, endometriotic grafts with fluorescence. Finally, the nanoparticles increase the temperature of endometriotic grafts up to 47 °C upon exposure to NIR light, completely eradicating them after a single treatment.


Asunto(s)
Endometriosis , Hipertermia Inducida , Nanopartículas , Fototerapia , Animales , Endometriosis/diagnóstico por imagen , Endometriosis/terapia , Femenino , Humanos , Macaca mulatta , Ratones , Imagen Óptica
6.
J Vasc Interv Radiol ; 30(9): 1480-1486.e2, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31202675

RESUMEN

PURPOSE: To assess selective accumulation of biodegradable nanoparticles within hepatic tumors after transarterial delivery for in vivo localization and combinatorial phototherapy. MATERIALS AND METHODS: A VX2 hepatic tumor model was used in New Zealand white rabbits. Transarterial delivery of silicon naphthalocyanine biodegradable nanoparticles was performed using a microcatheter via the proper hepatic artery. Tumors were exposed via laparotomy, and nanoparticles were observed by near-infrared (NIR) fluorescence imaging. For phototherapy, a handheld NIR laser (785 nm) at 0.6 W/cm2 was used to expose tumor or background liver, and tissue temperatures were assessed with a fiberoptic temperature probe. Intratumoral reactive oxygen species formation was assessed using a fluorophore (2',7'-dichlorodihydrofluorescein diacetate). RESULTS: Nanoparticles selectively accumulated within viable tumor by NIR fluorescence. Necrotic portions of tumor did not accumulate nanoparticles, consistent with a vascular distribution. NIR-dependent heat generation was observed with nanoparticle-containing tumors, but not in background liver. No heat was generated in the absence of NIR laser light. Reactive oxygen species were formed in nanoparticle-containing tumors exposed to NIR laser light, but not in background liver treated with NIR laser or in tumors in the absence of NIR light. CONCLUSIONS: Biodegradable nanoparticle delivery to liver tumors from a transarterial approach enabled selective in vivo tumor imaging and combinatorial phototherapy.


Asunto(s)
Medios de Contraste/administración & dosificación , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Nanopartículas , Imagen Óptica/métodos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Silanos/administración & dosificación , Nanomedicina Teranóstica/métodos , Animales , Línea Celular Tumoral , Femenino , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Proyectos Piloto , Valor Predictivo de las Pruebas , Conejos , Especies Reactivas de Oxígeno/metabolismo
7.
ACS Nano ; 13(6): 6383-6395, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31082199

RESUMEN

Despite its promising therapeutic potential, nanoparticle-mediated magnetic hyperthermia is currently limited to the treatment of localized and relatively accessible cancer tumors because the required therapeutic temperatures above 40 °C can only be achieved by direct intratumoral injection of conventional iron oxide nanoparticles. To realize the true potential of magnetic hyperthermia for cancer treatment, there is an unmet need for nanoparticles with high heating capacity that can efficiently accumulate at tumor sites following systemic administration and generate desirable intratumoral temperatures upon exposure to an alternating magnetic field (AMF). Although there have been many attempts to develop the desired nanoparticles, reported animal studies reveal the challenges associated with reaching therapeutically relevant intratumoral temperatures following systemic administration at clinically relevant doses. Therefore, we developed efficient magnetic nanoclusters with enhanced heating efficiency for systemically delivered magnetic hyperthermia that are composed of cobalt- and manganese-doped, hexagon-shaped iron oxide nanoparticles (CoMn-IONP) encapsulated in biocompatible PEG-PCL (poly(ethylene glycol)- b-poly(ε-caprolactone))-based nanocarriers. Animal studies validated that the developed nanoclusters are nontoxic, efficiently accumulate in ovarian cancer tumors following a single intravenous injection, and elevate intratumoral temperature up to 44 °C upon exposure to safe and tolerable AMF. Moreover, the obtained results confirmed the efficiency of the nanoclusters to generate the required intratumoral temperature after repeated injections and demonstrated that nanocluster-mediated magnetic hyperthermia significantly inhibits cancer growth. In summary, this nanoplatform is a milestone in the development of systemically delivered magnetic hyperthermia for the treatment of cancer tumors that are difficult to access for intratumoral injection.


Asunto(s)
Hipertermia Inducida/métodos , Campos Magnéticos , Nanopartículas de Magnetita/química , Nanoconjugados/química , Animales , Línea Celular Tumoral , Femenino , Compuestos Férricos/química , Humanos , Lactonas/química , Nanopartículas de Magnetita/uso terapéutico , Ratones , Neoplasias Experimentales/terapia , Polietilenglicoles/química
8.
Theranostics ; 8(3): 767-784, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29344305

RESUMEN

Fluorescence image-guided surgery combined with intraoperative therapeutic modalities has great potential for intraoperative detection of oncologic targets and eradication of unresectable cancer residues. Therefore, we have developed an activatable theranostic nanoplatform that can be used concurrently for two purposes: (1) tumor delineation with real-time near infrared (NIR) fluorescence signal during surgery, and (2) intraoperative targeted treatment to further eliminate unresected disease sites by non-toxic phototherapy. Methods: The developed nanoplatform is based on a single agent, silicon naphthalocyanine (SiNc), encapsulated in biodegradable PEG-PCL (poly (ethylene glycol)-b-poly(ɛ-caprolactone)) nanoparticles. It is engineered to be non-fluorescent initially via dense SiNc packing within the nanoparticle's hydrophobic core, with NIR fluorescence activation after accumulation at the tumor site. The activatable nanoplatform was evaluated in vitro and in two different murine cancer models, including an ovarian intraperitoneal metastasis-mimicking model. Furthermore, fluorescence image-guided surgery mediated by this nanoplatform was performed on the employed animal models using a Fluobeam® 800 imaging system. Finally, the phototherapeutic efficacy of the developed nanoplatform was demonstrated in vivo. Results: Our in vitro data suggest that the intracellular environment of cancer cells is capable of compromising the integrity of self-assembled nanoparticles and thus causes disruption of the tight dye packing inside the hydrophobic cores and activation of the NIR fluorescence. Animal studies demonstrated accumulation of activatable nanoparticles at the tumor site following systemic administration, as well as release and fluorescence recovery of SiNc from the polymeric carrier. It was also validated that the developed nanoparticles are compatible with the intraoperative imaging system Fluobeam® 800, and nanoparticle-mediated image-guided surgery provides successful resection of cancer tumors. Finally, in vivo studies revealed that combinatorial phototherapy mediated by the nanoparticles could efficiently eradicate chemoresistant ovarian cancer tumors. Conclusion: The revealed properties of the activatable nanoplatform make it highly promising for further application in clinical image-guided surgery and combined phototherapy, facilitating a potential translation to clinical studies.


Asunto(s)
Neoplasias Experimentales/terapia , Fototerapia/métodos , Espectroscopía Infrarroja Corta/métodos , Cirugía Asistida por Computador/métodos , Nanomedicina Teranóstica/métodos , Animales , Femenino , Colorantes Fluorescentes/farmacocinética , Células HEK293 , Humanos , Lactonas/química , Ratones , Ratones Desnudos , Nanopartículas/química , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/cirugía , Polietilenglicoles/química , Porfirinas/farmacocinética
9.
Nanomedicine ; 13(3): 955-963, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27884637

RESUMEN

This study represents a novel phototheranostic nanoplatform based on the near-infrared (NIR) heptamethine cyanine dye, IR775, which is capable of concurrent real-time fluorescence imaging and cancer eradication with combinatorial phototherapy. To achieve water solubility and enhance tumor delivery, the hydrophobic IR775 dye was loaded into a biocompatible polymeric nanoparticle with a diameter of ~40nm and slightly negative surface charge (-2.34mV). The nanoparticle-encapsulated hydrophobic IR775 dye (IR775-NP) is characterized by an enhanced fluorescence quantum yield (16%) when compared to the water soluble analogs such as ICG (2.7%) and IR783 (8%). Furthermore, the developed IR-775-NP efficiently generates both heat and reactive oxygen species under NIR light irradiation, eradicating cancer cells in vitro. Finally, animal studies revealed that the IR775-NP accumulates in cancer tumors after systemic administration, efficiently delineates them with NIR fluorescence signal and completely eradicates chemo resistant cancer tissue after a single dose of combinatorial phototherapy.


Asunto(s)
Colorantes Fluorescentes/farmacocinética , Colorantes Fluorescentes/uso terapéutico , Indoles/farmacocinética , Indoles/uso terapéutico , Neoplasias Ováricas/terapia , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Animales , Carbocianinas/farmacocinética , Carbocianinas/uso terapéutico , Línea Celular Tumoral , Femenino , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/análisis , Humanos , Indoles/administración & dosificación , Indoles/análisis , Ratones , Nanopartículas/administración & dosificación , Nanopartículas/análisis , Imagen Óptica/métodos , Neoplasias Ováricas/diagnóstico por imagen , Ovario/diagnóstico por imagen
10.
Int J Nanomedicine ; 10: 2347-62, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25848255

RESUMEN

We report a novel cancer-targeted nanomedicine platform for imaging and prospect for future treatment of unresected ovarian cancer tumors by intraoperative multimodal phototherapy. To develop the required theranostic system, novel low-oxygen graphene nanosheets were chemically modified with polypropylenimine dendrimers loaded with phthalocyanine (Pc) as a photosensitizer. Such a molecular design prevents fluorescence quenching of the Pc by graphene nanosheets, providing the possibility of fluorescence imaging. Furthermore, the developed nanoplatform was conjugated with poly(ethylene glycol), to improve biocompatibility, and with luteinizing hormone-releasing hormone (LHRH) peptide, for tumor-targeted delivery. Notably, a low-power near-infrared (NIR) irradiation of single wavelength was used for both heat generation by the graphene nanosheets (photothermal therapy [PTT]) and for reactive oxygen species (ROS)-production by Pc (photodynamic therapy [PDT]). The combinatorial phototherapy resulted in an enhanced destruction of ovarian cancer cells, with a killing efficacy of 90%-95% at low Pc and low-oxygen graphene dosages, presumably conferring cytotoxicity to the synergistic effects of generated ROS and mild hyperthermia. An animal study confirmed that Pc loaded into the nanoplatform can be employed as a NIR fluorescence agent for imaging-guided drug delivery. Hence, the newly developed Pc-graphene nanoplatform has the significant potential as an effective NIR theranostic probe for imaging and combinatorial phototherapy.


Asunto(s)
Grafito/química , Indoles/química , Nanoestructuras/química , Fototerapia/métodos , Línea Celular Tumoral , Humanos , Isoindoles , Nanotecnología
11.
Nanoscale ; 7(9): 3888-902, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25422147

RESUMEN

Multifunctional theranostic platforms capable of concurrent near-infrared (NIR) fluorescence imaging and phototherapies are strongly desired for cancer diagnosis and treatment. However, the integration of separate imaging and therapeutic components into nanocarriers results in complex theranostic systems with limited translational potential. A single agent-based theranostic nanoplatform, therefore, was developed for concurrent NIR fluorescence imaging and combinatorial phototherapy with dual photodynamic (PDT) and photothermal (PTT) therapeutic mechanisms. The transformation of a substituted silicon naphthalocyanine (SiNc) into a biocompatible nanoplatform (SiNc-NP) was achieved by SiNc encapsulation into the hydrophobic interior of a generation 5 polypropylenimine dendrimer following surface modification with polyethylene glycol. Encapsulation provides aqueous solubility to SiNc and preserves its NIR fluorescence, PDT and PTT properties. Moreover, an impressive photostability in the dendrimer-encapsulated SiNc has been detected. Under NIR irradiation (785 nm, 1.3 W cm(-2)), SiNc-NP manifested robust heat generation capability (ΔT = 40 °C) and efficiently produced reactive oxygen species essential for PTT and PDT, respectively, without releasing SiNc from the nanopaltform. By varying the laser power density from 0.3 W cm(-2) to 1.3 W cm(-2) the therapeutic mechanism of SiNc-NP could be switched from PDT to combinatorial PDT-PTT treatment. In vitro and in vivo studies confirmed that phototherapy mediated by SiNc can efficiently destroy chemotherapy resistant ovarian cancer cells. Remarkably, solid tumors treated with a single dose of SiNc-NP combined with NIR irradiation were completely eradicated without cancer recurrence. Finally, the efficiency of SiNc-NP as an NIR imaging agent was confirmed by recording the strong fluorescence signal in the tumor, which was not photobleached during the phototherapeutic procedure.


Asunto(s)
Dendrímeros/química , Nanopartículas/química , Compuestos de Organosilicio/química , Neoplasias Ováricas/terapia , Fármacos Fotosensibilizantes/química , Porfirinas/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Rayos Infrarrojos , Ratones , Ratones Desnudos , Compuestos de Organosilicio/farmacología , Neoplasias Ováricas/diagnóstico , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fototerapia , Polipropilenos/química , Porfirinas/farmacología , Oxígeno Singlete/metabolismo , Espectroscopía Infrarroja Corta , Nanomedicina Teranóstica
12.
Langmuir ; 25(4): 2107-13, 2009 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-19199718

RESUMEN

A surface functionalization methodology for the development of ZnO nanotips biosensors that can be integrated with microelectronics was developed. Two types of long chain carboxylic acids linkers were employed for the functionalization of 0.5 mum thick MOCVD-grown ZnO nanotip films with single-stranded DNA (ssDNA), followed by hybridization with complementary ssDNA tagged with fluorescein. The ZnO functionalization strategy was developed for the fabrication of ZnO nanotips-linker-biomolecule films integrated with bulk acoustic wave (BAW) biosensors, and it involved three main steps. First, 16-(2-pyridyldithiol)hexadecanoic acid or N-(15-carboxypentadecanoyloxy)succinimide, both bifunctional C16 carboxylic acids, were bound to ZnO nanotip films through the COOH group, leaving at the opposite end of the alkyl chain a thiol group protected as a 2-pyridyl disulfide, or a carboxylic group protected as a N-succinimide, respectively. In the second step, ssDNA was covalently linked to each type of ZnO-linker film: the 2-pyridyl disulfide end group was substituted with 16 bases 5'-thiol-modified DNA (SH-ssDNA), and the N-succinimide ester end group was substituted with 16 bases 5'-amino-modified DNA (NH(2)-ssDNA). In the third step, the DNA-functionalized ZnO nanotip films were hybridized with complementary 5'-fluorescein ssDNA. The surface-modified ZnO nanotip films were characterized after each step by FT-IR-ATR, fluorescence emission spectroscopy, and fluorescence microscopy. This functionalization approach allows sequential reactions on the surface and, in principle, can be extended to numerous other molecules and biomolecules.


Asunto(s)
ADN/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Óxido de Zinc/química , Microscopía Electrónica de Rastreo , Estructura Molecular , Ácido Palmítico/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA