Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 11(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36421241

RESUMEN

Invasive plants efficiently colonize non-native territories, suggesting a great production of bioactive metabolites which could be effective antibiofilm weapons. Our study aimed to look for original molecules able to inhibit bispecies biofilm formed by S. aureus and C. albicans. Extracts from five invasive macrophytes (Ludwigia peploides, Ludwigia grandiflora, Myriophyllum aquaticum, Lagarosiphon major and Egeria densa) were prepared and tested in vitro against 24 h old bispecies biofilms using a crystal violet staining (CVS) assay. The activities of the extracts reducing the biofilm total biomass by 50% or more were comparatively analyzed against each microbial species forming the biofilm by flow cytometry (FCM) and scanning electron microscopy. Extracts active against both species were fractionated. Obtained fractions were analyzed by UHPLC-MS/MS and evaluated by the CVS assay. Chemical and biological data were combined into a bioactivity-based molecular networking (BBMN) to identify active compounds. The aerial stem extract of L. grandiflora showed the highest antibiofilm activity (>50% inhibition at 50 µg∙mL−1). The biological, chemical and BBMN investigations of its fractions highlighted nine ions correlated with the antibiofilm activity. The most correlated compound, identified as betulinic acid (BA), inhibited bispecies biofilms regardless of the three tested couples of strains (ATCC strains: >40% inhibition, clinical isolates: ≈27% inhibition), confirming its antibiofilm interest.

2.
Compr Rev Food Sci Food Saf ; 21(2): 1161-1197, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35092346

RESUMEN

Mycotoxins are metabolites produced by molds that contaminate food commodities, are harmful to both humans and animals, as well as cause economic losses. Many countries have set regulatory limits and strict thresholds to control the level of mycotoxins in food and feedstuffs. New technologies and strategies have been developed to inhibit toxigenic fungal invasion and to decontaminate mycotoxins. However, many of these strategies do not sufficiently detoxify mycotoxins and leave residual toxic by-products. This review focuses on the use of phenolic compounds obtained from botanical extracts as promising bioagents to inhibit fungal growth and/or to limit mycotoxin yields. The mechanism of these botanicals, legislation concerning their use, and their safety are also discussed. In addition, recent strategies to overcome stability and solubility constraints of phenolic compounds to be used in food and feed stuffs are also mentioned.


Asunto(s)
Contaminación de Alimentos , Micotoxinas , Animales , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Hongos , Micotoxinas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA